A BACI study of river restoration with largewood additions using PIT-tagged tracer particles to access bed-sediment mobility on the Narraguagus River, Maine

DOUGLAS THOMPSON¹, STEVEN KOENIG², SAMUEL FIXLER¹, ANNA MARSHALL³, MORIAH MCKENNA¹, EMMA BROOKS¹, JOSHUA COLEMAN¹, CLARE LOUGHLIN¹ & CHARLIE WILLIAMS¹

1 Environmental Studies Program, Connecticut College, New London, CT 2 Project SHARE, Eastport, ME

3 Connecticut Fund for the Environment, Save the Sound, New Haven, CT

Funding provided by the National Fish and Wildlife Foundation (Grant # 2004-0010-022 and 49552). Elizabeth Follett and Kalinda Roberts assisted with fieldwork. Chris Federico did much of the restoration design and implementation work.

Narraguagus River, Maine USA: Atlantic salmon restoration

Courtesy of Forest History Society

Courtesy of Forest History Society

Courtesy of Town of Clifton Museum

Courtesy of Forest History Society

Courtesy Boston Public Library

Courtesy Library of Congress.

U.S. National Archives and Records Administration

U.S. Forest Service

Photo courtesy Minnesota Historical Society collection, locator number HD5.44 r9.

very wide

William Real and Company

very shellow

lennebile bad

ecucity vecetation)

Narraguagus River, Maine USA

Control reach

in-channel pond

logging splash dam

in-channel pond

> logging splash dam

Treatment Reach

in-channel pond

in-channel pond

How can wood additions help?

Blackledge River, CT

Ν

Narraguagus River, Maine USA

LW

jam

secondary channel

BACI: Before, After Control, Impact

TXS – Control

very shellow

20 - 26 m

10-12 m

SXS – Treatment (Impact)

PIT Tag Tracer Particles

June-July 2016

- 10 cross-sections with 20 particles/cross-section
- Alternate 28-mm and 40mm PIT-tagged particles
- Cross-section elevation surveys
- Embeddedness estimates along cross-sections

PIT Tag Tracer Particles

40 mm

Cross-section resurveys

A

PIT tag particle search and resurvey

Treatment (IMPACT): July 2018

Post-Assisted Log Structures (PALS)

Treatment (IMPACT): July 2018

Treatment Reach

10.2 (0.8)

Nound

Control Reach

Nominal logistic analysis (Entrainment rates) Reach (p < 0.001) Peak discharge (p = 0.0329) Particle size (Not Significant) Treatment period (Not Significant)

Entrainment rate (re-entrained)			
Year	28-mm	40-mm	
2017	13.1 (NA)	8.2 (NA)	
2018	17.4 (4.3)	22.9 (0.0)	

13.2 (2.5)

2019

Entrainment rate (re-entrained)

Year	28-mm	40-mm
2017	24.6 (NA)	29.4 (NA)
2018	22.1 (7.1)	48.4 (14.5)
2019	20.9 (13.0)	28.6 (15.9)

Conclusions

- The Narraguagus River is overly wide and shallow due to past logging activities
- Particle mobility is limited even during a large flood
- Particle entrainment rates between 28 mm and 40 mm particles are similar (equal mobility?)
- PALS additions did NOT impact entrainment rates, but DID increase particle step lengths in the treatment reach

<u>cnzyou</u>

Elevation Change: Treatment

