Analyzing Fault Reactivation Potential of CO2 Storage

*Ogochukwu Ozotta, Mehdi Ostadhassan, Kouqi Liu

*ogochukwu.ozotta@und.edu

According to the EPA eGRID2016 database, as of 2016, U.S. emits about $2x10^9$ tonnes CO₂/year as shown. Out of that North Dakota has about 37 x 10⁶ tonnes CO₂/year net generation of CO₂.

- Carbon storage and enhanced oil recovery are two methods which gets rocks exposed to CO2
- I'm studying CO2 storage effect on rock matrix, pore structures of the Bakken shale.

<u>Method</u>

Results

Discussion and conclusion

Method

• CO2 operations involve the injection and pressurization of reservoirs that usually results in changes to the state of in-situ stresses that may destabilize fractures.

Discussion and conclusion

Results

- Instability can lead to slippage along preexisting fracture systems.
- Fractures are conduits for fluid seepages and may raise reservoir pressures.

• $H_2O + CO_2 \leftrightarrow H_2CO_3$ (1)

Method

• $CaCO_3 + H_2CO_3 \leftrightarrow Ca(HCO_3)_2$ (2)

• When carbon dioxide is injected into shale reservoir, it dissolves in water and changes the acidbase equilibrium that then triggers the dissolution and precipitation of minerals.

Results

Discussion and conclusion

• Carbon dioxide dissolves in water to form bicarbonate (Equation 1) and dissociates to carbonic acid. Carbonic acid dissolved calcites in carbonate rocks (Equation 2).

Discussion and conclusion Introduction Results Method Applied load Signal and the family of Filter Conditioner Pre-Amplifier Transducer Amplifier and The second secon

Acoustic Emission method

1001

Applied load

s attached

to Core

Parametric

inputs

Event

Detector

Displacement,h

Nanoindentation method

n,

Method

Results

The average Young's modulus and hardness of the shale reservoir was 79.8 and 4.4 G Pa before saturation, 52.6 and 2.1 G Pa after 60 days CO2 saturation.

Introduction Method Results
Discussion and Conclusion

- The Young's modulus declined at 34% after 60 days and the hardness declined at 51% after 60 days.
- Perform X-ray Powder Diffraction (XRD) test to estimate how the mineralogical components of the sample will change with respect to the CO2 exposure.
- Estimate the pore network and the pore connectivity changes using gas adsorption.
- Generate seismic of the core plug to to better understand the pore network and structure in high frequency.
- Determine the crack propagation of the shale reservoir using acoustic emission with overburden load.

Acknowledgments

Question?