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Paleontological and Geochemical Results

« (Conodonts recovered from the section include Epigondolella carinata, E. cf. spiculata, Mockina englandi, M. cf.
englandi, M. postera, M. spinosa, Norigondolella navicula, Orchardella bidentata, and O. mosheri morphotype B
(Figure 6).

 The appearance of the Rhaetian species M. mosheri (Carter and Orchard, 2007) high in the stratigraphy of the
Sinwa East and Sinwa West sections demonstrate close proximity to the Norian — Rhaetian boundary (Figure 3).

 (Conodont recovery in the Aksala Formation sections confirm Late Triassic age, but do not place any stage
boundaries (Figure 4).

« The Sinwa East section records 3 negative 6'°C isotope excursions which may indicate a fall in biotic productivity at
each interval (Figure 3). The uppermost excursion occurs at the transition to shale facies. Zaffani et al. (2017)
observed similar excursion patterns in 613Corg of a Western Tethys section of the same age and interpreted the
stratigraphically highest excursion as coinciding with the Norian-Rhaetian boundary.

« The Sinwa West section records 4 negative 8'3C isotope excursions, with the uppermost excursion again occurring
at the transition to a shale facies (Figure 4).

« Strong correlation between the 6'°C and 880 curves in both Aksala Formation sections indicate the 8'3C record no
longer represents a primary signal. There is no clear difference between the Aksala and Sinwa Formations that
explains why this is the case.

 Re-Os dating near the top of both the Sinwa East and Sinwa West sections confirm the right age range for the
Norian — Rhaetian boundary (Figure 4).

Figure 6: Conodont species recovered from the Sinwa and Aksala Formations. 1-3:
Orchardella mosheri morphotype B (Kozur & Mostler, 1976); 4-6: Mockina englandi (Orchard,
1991); 7-9: Norigondolella navicula (Huckriede, 1958); 10-12: M. spinosa (Orchard, 2018); 13-
15: Epigondolella carinata (Orchard, 1991); 16-18: O. bidentata (Mosher, 1968); 19-21: E. cf.
spiculata (Orchard, 1991); 22-24: M. postera (Kozur & Mostler, 1971).

Conclusions and Ongoing Research

 The Norian — Rhaetian boundary is identified in
both Sinwa Formation sections, and is
associated with rapid sea level rise
transitioning to a shale facies.

* This boundary in the Sinwa Formation is
supported by 8'3C, Re-Os, and conodonts.

« QOrganic 6'3C and 8%7Sr isotope analysis are
planned for the Sinwa sections and will further
support primary paleoenvironmental signal
from the carbonate 8'3C.

* Analysis is ongoing for an additional 2 Late
Triassic sections in Northern Vancouver Island.
Being associated with the Wrangell Terrane
iInstead of the Stikine Terrane, comparison with
the Whitehorse Trough formations can
differentiate global from regional
paleoenvironmental shifts.
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