Stuck in the clay: Organic matter preservation in Paleosols of Earth and Mars

Adrian Broz1,2, Greg Retallack1, Briony \v{H}organ3, Lucas Silva4, and Matt Polizzotto

1Department of Earth Sciences, University of Oregon
2Jacobs JETS contract, NASA Johnson Space Center
3Department of Earth, Atmospheric, and Planetary Sciences, Purdue University
4Department of Geography, University of Oregon
Known: Hydrothermal, diagenetic and pedogenic phyllosilicates across Mars
Poorly understood: How does clay mineralogy influence organic matter preservation through geological time?

Mawrth Vallis clay stratigraphy (HiRISE/NASA/JPL/University of Arizona)
Paleosols on Mars?

Paleosol: A buried, lithified soil

1. Potential paleosols at Gale Crater
2. Dioctahedral clays (yellow) across the surface of Mars
3. Striking spectral similarities to Earth paleosols

![Paleosol image](image1)

4. Possible Noachean (4.1-3.7 Ga) paleosols at Mawrth Vallis
(Bishop et al., 2013, 2018; Horgan et al., 2012; Le Diet et al., 2012; Loizeau et al., 2015)

5. Martian paleosols named potential high-priority sampling location
In-situ biosignature detection (Hays et al., 2016) and Mars Sample Return (Bishop et al., 2018)
Where to sample? Landscape Scale

Mawrth Vallis clay stratigraphy (HiRISE/NASA/JPL/University of Arizona)
Where to sample? Outcrop Scale

Gillespie Lake Member, Yellowknife Bay (NASA / JPL / University of Arizona)
Eocene – Oligocene (42-28 Ma) volcaniclastic paleosols, Painted Hills Unit, John Day Fossil Beds National Monument, eastern Oregon. Photo – Tamer Ghonheim
What factors influence organic matter preservation in pedogenic clay sequences on Earth?
Highly weathered paleosols:
- Kaolinite and oxide-rich
- Humid climate
- No amorphous materials

Moderately weathered paleosols:
- Fe/Mg smectites – montmorillonite,
- Low amounts of amorphous materials

Minimally-weathered paleosols
- Low clay content
- Lots of amorphous materials
- Celadonite and clinoptolite

Brown Grotto – Painted Hills Unit
Painted Hills inner basin, Painted Hills Unit
Blue Basin – Sheep Rock Unit

Time

Eocene (41 Ma)
Early Oligocene (32 Ma)
Oligocene (~29 Ma)

Retallack et al., 2000
Horgan et al., 2011
Horgan et al., 2011
John Day Paleosols: Mars analog

1. Similar dioctahedral clay mineralogy
 - Kaolins, Al-smectites, Al/Fe oxyhydroxides, and Fe/Mg smectites
2. Similar amorphous phase mineralogy
 - Nanophase aluminosilicates, opal, allophane
3. Stratigraphic mineral distribution – Suggests cooling and drying

Bishop et al., 2016 LPSC
Knowledge Gaps and Hypothesis

Known:
Paleosols at John Day are a good analog for Noachean (4.1-3.7 Ga) clay sequences on Mars

Not known:
Organic matter (OM) content of John Day paleosols
Role of clay mineralogy / content on preservation of organics
Role of amorphous phase content on preservation of organics

Hypothesis: Surface layers of reduced paleosols with abundant Fe / Mg smectite clays have greatest levels of OM
Methods

Task 1: Analyze total organic carbon (TOC) in paleosol samples
Task 2: Perform EGA on samples under SAM-like conditions
Task 3: Acquire VNIR + XRD spectra / traces of all 26 pedotypes; correlate dominant clay mineralogy with TOC (November 2019)
First evolved gas analysis of Mars-analog paleosols

- Ambient \((O_2, 1000 \text{ mbar})\) and SAM-like conditions \((He, 30 \text{ mbar})\)

Goals
- Quantify total organic carbon (TOC) in three paleosols
- Determine which paleosols have the highest amounts of TOC;
- Correlate TOC with depth, clay mineralogy, amorphous phase abundance

![Ambient \((O_2, 1000 \text{ mbar})\)](image1)

![SAM-like \((He, 30 \text{ mbar})\)](image2)
Lithology

Grain size

~ 83 wt % clay
Alfisol

~ 75 wt % clay
Entisol

~ 78 wt % clay
Inceptisol

- Olive Gray (5Y 6/2) Noncalcareous
- Dusky Red (7.5YR 3/1) Noncalcareous
- Red (10R 3/1) Noncalcareous
- White (2.5Y 8/2) Noncalcareous
- Light Gray (2.5Y 7/3) Noncalcareous
- Light Gray (2.5Y 7/2) Weakly calcareous
- Greyish Brown (2.5Y 5/2) Weakly calcareous
- Greyish Brown (2.5Y 5/3) Noncalcareous
Results: Evolved Gas Analysis

Lithology
Grain size

TOC (wt %)

Depth (cm)

0
0.1
0.05
0.09

TOC: 0.1 wt %
TOC: 0.05 wt %
TOC: 0.09 wt %
Results: Evolved Gas Analysis
Results: VNIR and TIR spectra

Lithology

Grain size

~ 83 wt % clay red alfisol

~ 83 wt % clay red alfisol

VNIR Reflectance

2.1-2.5 μm reflectance

Horgan et al., 2011 AGU
Conclusions

- Oxidized Fe/Mg smectite-bearing paleosols have low but detectable amounts of TOC (0.02 – 0.14 wt %)
- Highest TOC values (> 0.1 wt %) in surface or shallow subsurface layers
- EGA: Sensitivity to distinguish between organic and inorganic carbonate; organic fragments present
- VNIR: Spectral similarities to phyllosilicate clay sequences on Mars
Acknowledgements

NASA JSC: Joanna Hogancamp, Paul Niles, Liz Rampe, Doug Archer, Doug Ming, Brad Sutter, and Valerie Tu

Barry Hughes