Estimating uncertainties on α -ejection corrections relevant for the apatite (U-Th)/He method using nano-CT

A systematic method for estimating error on α -ejection corrections doesn't exist:

- Getting accurate dates from the apatite (U-Th)/He method requires corrections for α ejection because He atoms can travel up to 20 µm¹ and can be lost from the crystal.
- These corrections are based on grain size and idealized geometries with smooth faces¹. • α -ejection is based on number of the terminations, crystal dimensions, and a 'hexagonal'
- or 'elliptical' geometry.
- We aim to expand the parameters α -ejection corrections are based on.
- Uncertainties on these corrections are poorly constrained and often not included when reporting apatite (U-Th)/He data.

	Goal	No. of Grains Analyzed	Description of Grains	Width of Grains
Glotzbach et al. (2019) ³	Develop a new method of measuring grains in 3D to reduce errors in α -ejection corrections.	24 grains	Rounded; Irregular; Hexagonal; 2 N _p , 0 N _p	50 μm < x <125 μn
Herman et al. (2007) ²	Approximate α -ejection corrections for irregular grains utilizing micro-CT for each grain.	11 grains	Detrital	>100 µm

Table 1. Summary of previous studies which attempted to solve this problem using micro-CT.

Apatite Selection Parameters:

Samples:	Туре	Age
Marlborough Fault System-05	Detrital	Miocene
Marlborough Fault System-07	Detrital	Miocene
Fish Canyon Tuff	Volcanic	Oligocene
Whitehorn	Intrusive	Cretaceous
McClure	Intrusive	Cambrian
Superior	Basement	Precambrian
Bail	Basement	Precambrian
Deep Creek	Intrusive	Eocene

Table 3. Descriptions of the nine samples used to pick grains for analysis.

Grain Quality:

Least	Prismatic	Α	В	С	D Rounde
surface relief	0				
1		0			
2					
2		0			
3					
	2	\bigcirc			
4			0		<u>ک</u>
Most surface relief	0				0

Fig 1. QUALM ("Quality Matrix"). Each apatite was graded on degree of roundness and surface relief. Apatite grains can be systemically described across studies using a QUALM.

categories.

References: [1] Farley et al. (1996) Geochimica et Cosmochimica et Cosmochimica et Cosmochimica et Cosmochimica Acta DOI: 10.1016/j.gca.2011.10.011 / J. Chemical Geology DOI: 10.1016/j.chemgeo.2007.03.009 [3] Glotzbach et al. (2017) Chemical Geology DOI: 10.1016/j.chemgeo.2018.12.032 [4] Calculated from: Ketcham et al. (2017) Geochimica et Cosmochimica et Cosmochimica et Cosmochimica Acta DOI: 10.1016/j.gca.2011.10.011 Acknowledgments: Funding for the Zeiss Xradia Versa X-Ray Microscope was provided by the NSF CMMI-1726864. Thanks to Ginger Ferguson for allowing use of the MIMIC Core Facility & XRM for so many samples. Thanks to Romy Hanna (UT Austin) for her help with Blob3D. Thanks to Morgan Baker for measuring grains.

Spencer K.D. Zeigler¹, James R. Metcalf¹, Rebecca M. Flowers¹, Jennifer C. Coulombe² Department of Geological Sciences, University of Colorado Boulder¹ Department of Mechanical Engineering, University of Colorado Boulder²

Research Goals:

 Use nano-computed tomography (nano-CT) to compare actual α -ejection corrections to manually calculated α -ejection corrections. Formulate a classification system for describing apatite grains. Assess if there is a relationship between the magnitude of uncertainty and the size, degree of rounding, or amount of surface relief of an apatite. study

Determine a 'rule of thumb' for estimating errors on α -ejection corrections based on specific apatite characteristics.

Table 2. Summary of this study.

àrains zed	Description of Grains	Width of Grains	Nano-CT Resolution	
3	Intrusive, volcanic, detrital, basement	40 μm < x < 170 μm	0.63 µm	
ilm		ight		
e grains each res aligned so mm to achieve Step 3. Stacks of 5 rounds were mounted on a rubber base superglued to the head of a dressmakers pin and secured with parafilm.				
		File View Vew mode Otho Z Vew Vew		
exported nano-CT data as .tiff stacks which were processed by separating apatite 'blobs' from α . Blob 3D calculated 'actual' α -ejection is, sphere normalized surface to volume ratio, ce area.				
	82.0µm	5.7µ	μm	
notom measu rosco _M val	icrographs c ured by two p pe. Number lue were also	of each grain were tak beople using a Leica of terminations, geom b recorded for each gr	en and netry, rain.	

most commonly analyzed grains of ~10%:

Error for α -ejection Corrections Based on QUALM Value

Least	Prismatic — Rounded				
Relief		Α	В	С	D
Most Surface Relief	1	8.7%	7.1%	7.7%	9.4%
	2	10.1%	9.4%	12.7%	3.9%
	3	5.2%	17.3%	15.7%	5.5%
	4	9.0%	4.9%	19.7%	19.9%

Fig 4. Average percent error for each QUALM value between the 'actual' α -ejection and manual α -ejection corrections. Percent error increases towards the bottom right corner (D4).

Number of Grains Analyzed in Each QUALM Value

Fig 5. Low numbers of grains at higher degrees of surface relief and rounding is at least partly due decreased ability to identify apatite visually

Fig 7. Examples of endmember apatite grains classified with the QUALM in 2D (photomicrograph) and in 3D (reconstructed in Dragonfly).

Ongoing Work:

- surface area, and volume to compare to Blob 3D α -ejection corrections.

- Increase the number of grains with QUALM values B4, C4, D1, D2, D3, D4.
- Consider the implications for uncertainties on apatite effective Uranium concentration values.

University of Colorado Boulder

Preliminary results suggest uncertainties on α -ejection corrections for the

25

categories between the 'actual' α -ejection and manual α ejection corrections⁴. Larger grains have less error associated with them.

Size Category	Number of Grains
Small and Never Run (40-50 µm)	15
Small and Rarely Run (51-60 µm)	35
Average (61-80 µm)	124
Large and Commonly Run (81-100 µm)	62
Large and Rarely Run (>100 µm)	57

Table 4. Total number of grains analyzed per size category.

• Post-process images in Dragonfly using size-exclusion to remove artifacts of the scanning process/noise, binarize the file, and get dimensions,

• Assign QUALM values to grains in 3D and compare to 2D QUALM assignments to assure consistency.

• Have 1-2 more people measure the grains in the dataset and assign QUALM values (in 2D) using the matrix to assure consistency.

• More thoroughly quantify the controls on uncertainty associated with α -ejection corrections.