

Modified from Tennant et al 2016, Nature Communications

Peters and Heim 2010, Paleobiology

- Lots of oxygen
- Very low salinity
- No buoyancy
- Low heat loss
- Low viscosity

- Less oxygen
- Very high salinity
- High buoyancy
- High heat loss
- High viscosity

*WHEN YOU'VE ADAPTED TO LIVING ON LAND

FOOD ACQUISITION

SALT BALANCE

THERMOREGULATION

*WHEN YOU'VE ADAPTED TO LIVING ON LAND

DEHYDRATION

LOCOMOTION

REPRODUCTION

MAMMALS GET MUCH BIGGER

CROCS GET MUCH BIGGER TOO

SNAKES

PREVIOUS WORK

Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status

João Filipe Riva Tonini ^{a,*}, Karen H. Beard ^b, Rodrigo Barbosa Ferreira ^{b,c}, Walter Jetz ^d, R. Alexander Pyron ^a

- ^a Department of Biological Sciences, The George Washington University, 2029 G St NW, Washington, DC 20052, USA
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322-5230, USA
- ^c Laboratório de Ecologia de Populações e Conservação, Universidade Vila Velha, Rua Comissário José Dantas de Melo 21, Boa Vista, Vila Velha, ES 29102-920, Brazil
- d Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2016) 25, 187-197

Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara

Anat Feldman¹, Niv Sabath², R. Alexander Pyron³, Itay Mayrose² and Shai Meiri^{1*}

ECOLOGY LETTERS

Ecology Letters, (2014) 17: 13-21

doi: 10 1111/ele 1216

LETTER

Early origin of viviparity and multiple reversions to oviparity in squamate reptiles

Abstract

R. Alexander Pyron¹* and Frank T. Burbrink^{2,3} Viviparity has putatively evolved 115 times in squamates (lizards and snakes), out of only \sim 140 origins in vertebrates, and is apparently related to colder climates and other factors such as body size. Viviparity apparently evolves from oviparity via egg-retention, and such taxa may thus still

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2015) 24, 1433-1442

The geography of snake reproductive mode: a global analysis of the evolution of snake viviparity

Anat Feldman^{1*}, Aaron M. Bauer², Fernando Castro-Herrera³, Laurent Chirio⁴, Indraneil Das⁵, Tiffany M. Doan⁶, Erez Maza¹, Danny Meirte⁷, Cristiano de Campos Nogueira⁸, Zoltán Tamás Nagy⁶, Omar Torres-Carvajal¹⁶, Peter Uetz¹¹ and Shai Meiri¹ Phylogeny Timescaled with ape::chronos() with fossil calibrations

Body mass (g)

Reproductive mode (eggs vs. live birth)

- Reproductive mode (eggs vs. live birth)
- Average temperature
- Average elevation

HABITAT DATA COLLECTION

BIOME

TIERING

Marques, Eterovic, and Sazima 2012

HABITAT DATA COLLECTION

BIOME

- Marine
- Brackish
- Freshwater
- Semi-aquatic
- Forest
- Grassland
- Desert
- Tundra/montane

TIERING

- Arboreal
- Scansorial ("semi-arboreal" or "climber)
- Surficial ("terrestrial")
- Semi-fossorial (occasional diggers)
- Fossorial ("digger")
- Aquatic

HABITAT DATA COLLECTION

BIOME

- Marine
- Brackish
- Freshwater
- Semi-aquatic
- Forest
- Grassland
- Desert
- Tundra/montane

TIERING

- Arboreal
- Scansorial ("semi-arboreal" or "climber)
- Surficial ("terrestrial")
- Semi-fossorial (occasional diggers)
- Fossorial ("digger")
- Aquatic

BODY SIZE BY BIOME

WAIT, HOW?

TEMPERATURE BY BIOME

WHICH ADAPTATIONS/CONDITIONS PRECEDED THE MARINE INVASIONS? (PERHAPS ENABLING THEM)

FIRST, RECONSTRUCT WHEN THE MARINE INVASIONS OCCURRED

THEN, RECONSTRUCT OTHER TRAITS AND ENVIRONMENTAL VARIABLES

Adaptation

Adaptation

Exaptation/Ecological Filtering

Adaptation

Exaptation/Ecological Filtering

Nonaptation (or adaptation for something else)

TESTING THE METHOD: ELEVATION

TESTING THE METHOD: ELEVATION

TESTING THE METHOD: ELEVATION

TEMPERATURE

BODY MASS

FRESHWATER OCCUPANCY

VIVIPARITY

CONCLUSIONS

- While aquatic snakes are significantly larger than their terrestrial counterparts, it doesn't match the extent in mammals or crocs
- Viviparity appears to have evolved before these lineages invaded the ocean,
 likely as an adaptation for some other reason
 - This facilitated marine invasions of snakes from many different environments, but only
 if those environments were in tropical regions at low elevation

ACKNOWLEDGMENTS

Elsie Carrillo
Christianne Orsmby
Jonathan Payne
Payne Paleobiology Lab
Lyons Paleoecology Lab

QUESTIONS?

TIERING

REPRODUCTIVE MODE BY BIOME

ELEVATION BY BIOME

Forest Occupancy

Grassland Occupancy

Forest Occupancy

Grassland Occupancy

Aquatic Tier

Fossorial Tier

Semifossorial Tier

Surficial Tier

Scansorial Tier

Arboreal Tier

