The Laramide event is a Late Cretaceous–Early Cenozoic deformational event that appears to have affected rocks from Tierra del Fuego to Alaska (Hildebrand and Whalen, 2014a). Deformation was both thin- and thick-skinned, and thrust faults are dominantly easterly vergent. Here, we focus on the North American sector, which not only includes thrust and strike-slip faults within both the Cordilleran fold-and-thrust belt and Rocky Mountain foreland, but also an exhumed metamorphic hinterland riddled with largely postdefor- mational plutons. We first address the tradi- tional Laramide thick-skinned deformation within the Rocky Mountain foreland, as most geologists consider this the essence of the Laramide event, or orogeny.

Introduction

The Laramide event is a Late Cretaceous–Early Cenozoic deformational event that appears to have affected rocks from Tierra del Fuego to Alaska (Hildebrand and Whalen, 2014a). Deformation was both thin- and thick-skinned, and thrust faults are dominantly easterly vergent. Here, we focus on the North American sector, which not only includes thrust and strike-slip faults within both the Cordilleran fold-and-thrust belt and Rocky Mountain foreland, but also an exhumed metamorphic hinterland riddled with largely postdefor- mational plutons. We first address the tradi- tional Laramide thick-skinned deformation within the Rocky Mountain foreland, as most geologists consider this the essence of the Laramide event, or orogeny.

Laramide thick-skinned deformation

The Rocky Mountain foreland of west-central North America contains a number of spectacular mountain ranges and adjacent syntectonic basins filled by alluvial and lacustrine deposits. The structure is variable, ranging from huge crystalline massifs hundreds of kilometers long in the Rocky Mountains to enormous monoclinal flexures on the Colorado Plateau. The uplifts trend north-south, northwest-southeast, or east-west. The deformation is thin-skinned, as it involved cratonic basement and commonly referred to as "Laramide style".

These models fail because they ignore many factors and much contrary data, some of which are described in the next column.

The age of the thick-skinned Rocky Mountain up-lifts and their adjacent basins is Maastrichtian to Eocene

References