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Collisional orogeny for the Late Cretaceous–Paleogene Laramide event
 Robert S. Hildebrand, 1401 N. Camino de Juan, Tucson, AZ 85745  & Joseph B. Whalen, Geological Survey of Canada, 601 Booth St., Ottawa, ON K1A 0E8

Laramide thick-skin deformation

The age of the thick-skin Rocky Mountain up-
lifts and their adjacent basins is Maastrichtian 
to Eocene

The Laramide event is a Late Cretaceous-
early Cenozoic deformational event that 
appears to have a�ected rocks from Tierra 
del Fuego to Alaska (Hildebrand and 
Whalen, 2014a). Deformation was both 
thin- and thick-skinned, and thrust faults 
are dominantly easterly vergent. Here, we 
focus on the North American sector, which 
not only includes thrust and strike-slip 
faults within both the Cordilleran fold-
and-thrust belt and Rocky Mountain fore-
land, but also an exhumed metamorphic 
hinterland riddled with largely postdefor-
mational plutons. We �rst address the tra-
ditional Laramide thick-skinned deforma- 
tion within the Rocky Mountain foreland, 
as most geologists consider this the es-
sence of the Laramide event, or orogeny.

Introduction Thin-skin thrusting, exhumation and post-collisional slab failure magmatism 

Closure of a poorly known basin, which must 
have been wide enough to have had oceanic 
lithosphere, led to a thin-skinned fold-thrust 
belt. Once the slab failed, thrusting ceased, 
slab melts formed, and the pluton-riddled hin-
terland was exhumed. Northward migration, 
likely driven by the Kula-Farallon ridge, gener-
ated the thick-skin Laramide-type structures 
and drove the Cordillera northward about 
1300 km. Eocene-Miocene arc magmatism 
formed from N-NE subduction as indicated by 
the volcanic isochrons across the Great Basin.

Uppermost Cretaceous to Paleocene plutons have slab failure, not arc, geochemistry
consistent with their emplacement during regional exhumation.

A long-standing problem in Cordilleran geology is the far-sided paleopoles for most regions west 
of cratonic North America. Hildebrand (2015) used the Lewis & Clark and Texas lineaments as 
piercing points to restore the inboard paleopoles. This reconstruction, which implies consider-
able strike-slip movement on faults of the fold-thrust belt, also re-unites the orogenic hinterland 
and its swarm of post-collisional slab failure plutons into a continuous band.

Campanian   Paleocene      Eocene

Greis, 1983

Thick-skinned deformation of the 
Rocky Mountain foreland was approxi-
mately coeval with the thin-skinned 
deformation north of the Lewis and 
Clark lineament within the Canadian 
Cordillera, and south of the Texas lin-
eament within the Mexican sector of 
the orogen (Armstrong, 1974). Note-
how the thin-skin thrusts of the same 
age as the Laramide thick-skin thrusts 
of the western US feed progressively 
into the Tintina fault suggesting that 
they have a considerable right-lateral 
strike-slip component.

The Laramide foredeep mi-
grated northward from the 
Campanian to Paleocene 
(Catuneanu et al., 2000; 
Roberts and Kirschbaum, 
1995); 

The Rocky Mountain foreland of west-central 
North America contains a number of spectacu-
lar mountain ranges and adjacent syntectonic 
basins �lled by alluvial and lacustrine deposits. 
The structure is variable, ranging from huge 
crystalline massifs hundreds of kilometers long 
in the Rocky Mountains to enormous monocli-
nal �exures on the Colorado Plateau. The uplifts 
trend north-south, northwest-southeast, or 
east-west. The deformation is thick-skinned, as 
it involved cratonic basement and  commonly 
referred to as “Laramide style”.

The thrusting in the US 
thin-skinned fold-thrust 
belt was more or less 
coeval with deformation 
and metamorphism 
within the orogenic hin-
terland, and stopped by 
the mid-Campanian, 
when the leading edge of 
the thrust belt was 
eroded and, along with 
rocks of the adjacent 
foredeep, buried by con-
glomerate and gravels of 
�uvial megafans derived 
from the more interior 
portions of the thrust 
wedge (DeCelles and 
Cavazza, 1999; DeCelles, 
2004; Liu et al., 2005).

The standard model 
today attempts to ex-
plain the lack of arc 
magmatism in the 
region by eastward 
�at-slab subduction 
with or without sub-
duction of the hypo-
thetical Shatsky & 
Hess rise conjugates. 

These models fail because they ignore many 
factors and much contrary data, some of 
which are described in the next column.

Exhumation in the hinter-
land started during the Late 
Campanian when thin-skin 
thrusting stopped
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