

Utilizing Topographic Structure for Characterizing and Mapping Dunes, White Sands National Monument, New Mexico

Brennan W. Young^{1,3}, Michael P. Bishop^{1,3}, Ryan C. Ewing^{2,3}

3

Introduction

Motivations

Dune morphology governed by:

- Climate
- Multi-scale wind conditions
- Sediment supply
- Vegetation
- Dune field hydrology

Dune field resilience to change?

Consistent characterization of dune morphology is necessary to understanding eolian system dynamics

Challenges

- Semantics
- Subjective mapping
- Limited, arbitrary sampling
- Scale-dependent characterization

Objectives

- Mathematically formalize characterization of dune morphology to understand dune-field systems
- Automate dune characterization in a repeatable fashion.

Study Area, Data

White Sands National Monument, New Mexico

- Gypsum sand dunes
- Pleistocene Lake Otero
- Shallow water table

1 m LiDAR

 Chihuahuan Desert Inventory & Monitoring Program, June 2007

National Park Service

Pedersen et al. (2015)

Eolian Topographic Structure IM | TEXAS A&M

DEM

Slope Facet Objects

Dune Partition

Dune Objects

Methods

Self-organization

Slope angle distribution

Topology/Context

- Above substrate
- High overlap with Ridge Objects

h

inferred substrate

Methods

Field & Object Properties

- Local volume, dune height (h)
- Divergence (SADI)

Boundary Properties

• "Divisiveness," $D_B = A_X / A_{X0}$ $A_X = cross-sectional area$ $A_{X0} = prototypical area$

Spatial Structure

- Merge across small D_B
- Divide junctions at maximum D_B

Dune Morphometry

- 098 mean lee slope azimuth
 - 33° from Pedersen et al.'s (2015) 065 measured wind direction
 - 43° from Swanson et al.'s (2016) 055 measured lee slope azimuths

Semantic Issues

Boundaries

- Which parameters?
- Different criteria for different boundaries?

Crestlines

 Assumption of smooth continuity beyond plane of 2D cross-section

Dune Orientation & Sinuosity

• Crestline? Dune footprint/perimeter?

Dune Spacing & Interdune Length

- Which other dunes are measured to?
- What are the points of reference?
- Direction-dependent

TEXAS A&M

Conclusions

Objective, automated approach for characterizing dune field morphometry

- Based on theory for hierarchical topographic spatial structure
- Mitigate sampling bias

Semantic and ontological issues in dune mapping and characterization (and geomorphological mapping in general):

- Boundaries
- Crestlines
- Interdune length & dune spacing
- Prototypical outliers are not representative

White Sands dune field exhibits

- Dune field is spatially variant
- Less dune height in vegetated areas (less saline water?)
- Crescent dunes distinguished by high surface area / planimetric area

Acknowledgments

National Park Service

David Bustos

Dune Morphometry IM | TEXAS A&M

Area (A) Perimeter (P) Shape-Compactness ($C = 4\pi A / P^2$) Surface Area (A_{surf}) Substrate Peak Height (h_{max}) Mean Height (\overline{h}) Volume (V) Width (*W*) Length (L = A / W)Orientation Azimuth (ϕ) Mean Lee Slope Azimuth (φ_{lee}) Crestline Length (L_{crest}) Sinuosity Interdune Length Mean Base Spacing (λ_0)