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Introduction 

 The paradigm of plate tectonics is the template for conceptual models in geology. The 

provocative work of Warren Hamilton challenges our understanding of the Earth by proposing that 

subduction and modern-style plate tectonics are a relatively new phenomena (Hamilton, 2019). The 

Belt and Purcell Supergroups offer critical constraints on the tectonics effecting the Mesoproterozoic 

Nuna supercontinent. Interpretations commonly fit the basin within the modern plate tectonic 

framework, classifying the basin as a failed rift (eg. Price 1964; McMechan 1981; Cressman 1989; 

Whipple 1989; Ross et al. 1989; Sears et al. 1998; Ross and Villeneuve, 2003; Sears et al., 2006; 

Stewart et al., 2010; Medig et al., 2014; Jones et al., 2015; Mulder et al., 2015). Alternatively, the ba-

sin may be interpreted as intracratonic, reflecting long-term stability within a prolonged period of 

tectonic quiescence and an absence of subduction, termed the “Boring Billion” (Brasier, 2012; Rob-

erts, 2013).  

 In this contribution, we honor the legacy of Warren Hamilton by investigating the tecton-

ics of the western Laurentian boundary of the Mesoproterozoic Nuna supercontinent as recorded 

within strata of the Belt Basin. The conventional failed-rift model cites removal of detrital zircon 

dates falling within the North American Magmatic Gap (NAMG; 1490 -1610 Ma) as evidence of rift-

ing away of an adjacent Non-Laurentian source terrane. This model fundamentally assumes that de-

trital zircon populations are evenly distributed in space but not time, so that stratigraphic units have 

characteristic signatures that reflect the tectonic state of the greater basin. We test this fundamental 

assumption by cataloguing 72 detrital zircon datasets and quantifying dissimilarity between the 

samples as a function of space and time. We interpret these spatial and temporal trends in prove-

nance through the context of available stratigraphic and sedimentologic models for the basin. We 

offer key constraints which must be satisfied by any viable tectonic models whether that be con-

sistent with the modern plate tectonic framework or with the Boring Billion hypothesis.    

Conventional rift model 
(eg. Price 1964; McMechan 1981; Cressman 1989; Whipple 1989; Ross et al. 1989; Sears et al. 1998; Ross and Villeneuve, 2003; Sears et 
al., 2006; Stewart et al., 2010; Medig et al., 2014; Jones et al., 2015; Mulder et al., 2015) 

 

Assumption 

 Detrital zircons are evenly distributed in space, but not time. So that a sample from a given stratigraphic 
package is representative of the basin as a whole and therefore reflects the tectonic regime 

Observations 

 NAMG signature is present below the Missoula Group and equivalent strata, but absent within the Mis-
soula Group and equivalent strata 

 Yavapai-Mazatzal-Mojave signature dominates Missoula Group and equivalent strata 

Interpretations 

 Rifting of Nuna at 1.45 Ga removes NAMG source terranes west of Laurentia 

 Exhumation associated with orogenesis to the south provides the Yavapai-Mazatzal-Mojave signature 

Prediction 

 The shift from a NAMG to Yavapai-Mazatzal-Mojave signature is sudden, occurring at 1.45 Ga 

 The shift from a NAMG to Yavapai-Mazatzal-Mojave signature is widespread, occurring throughout the 
basin 

Assessment of the rift model 

Assumptions 

 Sheetflood deposition resulted in detrital zircons that are NOT evenly distributed in space or time 

 Detrital zircon signatures are only diagnostic for a stratigraphic package when samples are within ~200 km of each other 

Observations 

 The NAMG signature is spatially biased, only dominating when samples are near the Priest River block 

 The strength of the NAMG signature may diminish upsection, but the apparent loss occurring at the Missoula Group is due to spatial bias  

 Yavapai-Mazatzal-Mojave signature gradually becomes more abundant upsection and to the south 

Interpretations 

 Source terranes remained in communication with the Belt-Purcell basin throughout deposition 

 Sheetflood deposition resulted in poor mixing and limited transport of sediment packages 

 Gradual changes in the detrital zircon signature through time do NOT require a major basin reorganization 

 Slow and gradual denudation of a widespread pediment satisfies the observations 

Prediction 

 Missoula Group and equivalent strata in the north and western part of the basin, within ~200 km of the Priest River block, should contain a NAMG signature 

Constraints for viable tectonic models 

 Long-lived deposition, with stable baselevel conditions 

 Minor to absent magmatism 

 Lack of angular unconformities 

 Thickness changes across structural liniments 

 Source terranes  remained in communication throughout 

the life of the basin 

 Limited exhumation of surrounding Archean cratonic blocks 

 Gradual decrease in NAMG abundance (derived from the 

west) upsection 

 Gradual increase in Yavapai-Mazatzal-Mojave abundance 

(derived from south) upsection 

 Upper unconformity (mostly the Sauk sequence boundary) 

cuts upsection towards the center of the basin 

Conclusions 

 Stratigraphic position alone does not predict detrital zircon signature  

 Detrital zircon signatures have low internal consistencies and carry less than ~200 km  

 North American Magmatic Gap dates (1.49-1.61 Ga) are only dominant within 200 km of the Priest River block and remain present throughout deposi-

tion  

 Earliest Paleoproterozoic and Archean dates (> 2.0 Ga) are localized near the Perry and Vulcan Lines  

 The fundamental assumption and foremost prediction of the conventional rift model are inconsistent with the cataloged detrital zircon data 

 Deposition occurred at grade in a low-relief landscape without fault block rotation, sudden removal of source terrains, or significant exhumation of the 

surrounding Archean blocks  

 kilometers of vertical accommodation space were filled in the absence of significant horizontal extension of the upper crust, consistent with the hy-

pothesis that vertical motions dominated the “boring billion”  
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The Boring Billion as told through the Mesoproterozoic Belt and Purcell Supergroups 

 

Mud-cracked silt to clay couplets assigned to a playa setting.  

Tabular, flat-laminated quartzite with climbing ripples showing decelerating and shallowing 
flow, assigned to a proximal sheetflood setting.  

Sedimentology and Stratigraphy 

  

 

The Belt-Purcell basin is extraordinary in its thick-

ness and continuity. The following are the key 

attributes of the Belt-Purcell basin. 

 

 Observation 

-Laterally continuous, graded event beds 

-Predominantly shallow water facies  

-No unconformities and negligible incision 

-Lithostratigraphy can be correlated over great dis-

tances 

-Discrete sediment packages enter the basin from 

all sides 

  

 Interpretation 

-Sediment transport occurred at grade, in uncon-

fined sheetfloods 

-Profound absence of topography 

-Gently rising and falling water level 

-Continuous deposition 

 

 

 

 

 

Detrital Zircon Source Terranes 

1.75-1.90 Ga: Dispersed Laurentian signature from the east 

1.49-1.61 Ga: NAMG signature, Non-Laurentian sources to the west 

>2.00 Ga: Local cratonic signatures of the Wyoming,Medicine Hat, and Hearne Province 

1.65-1.80 Ga: Yavapai-Mazatzal-Mojave signature from the south 
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Visualizing Stratigraphic trends 

Methods 

 Reported best U/Pb detrital zircon dates and corresponding uncertainties were listed in series for 72 individual samples 

with sample sizes ranging from 18 to 190 grains (Aleinikoff et al., 2012; Aleinikoff et al., 2015; Gardner, 2006; Hendrix et al., 

Unpublished; Ross and Villeneuve, 2003; Lewis et al., 2007; Lewis et al., 2010; Link et al., 2007; Link et al., 2016; Mueller et 

al., 2016; Stewart et al., 2010).  

 Two-dimensional metric MDS  

  1) Quantify dissimilarity for all comparisons using Kolmogorov–Smirnov (KS) statistics.   

  2) Create Symmetrical matrix of all dissimilarity (D) values. [Complete dissimilarity when D=1.0, and complete simi-

larity when D=0.0. Statistically indistinguishable within 95% certainty when D<.03 (Satkoski et al., 2013).] 

  3) Perform MDS. [Each date series is a single point plotted in an arbitrary two-dimensional space. Distances be-

tween points approximate the similarities (D values) between series. Kruskal’s stress (S) values quantify the misfit of the mod-

el (the discrepancy between the measured dissimilarity and the plotted distance). Model fit is “poor” when S >0.2 and 

“perfect” when S=0 Kruskal (1964).  

  4) Connect nearest neighbors with solid lines  

Results 

  Individual samples 

 -D range from 0.05 to 0.98 

 -Average D of 0.5 (n=2,556), slight bimodal distribution  

 -Internal consistency = 30% (N=72, n=2,556).  

 -Low D values are less abundant for increasing stratigraphic  

 -Internal consistencies decrease with increasing stratigraphic separation.  

 -Trends are dampened in Missoula Group data 

  Stratigraphically equivalent samples 

 -Dates are mostly <2.0 Ga, with the exception of the LaHood  

 -Low internal consistencies, averaging 60%.  

 -Yavapai-Mazatzal-Mojave dates (1.65-1.80 Ga) most common population at all stratigraphic levels  

 -Yavapai-Mazatzal-Mojave dates are more common upsection 

 -NAMG dates (1.49-1.61 Ga) are rare, but are only entirely absent in the Neihart equivalent strata.  

 -NAMG dates are less common upsection (with no break in trend) 

 -Complex mixing between the four identified source terrane endmembers 

 -Nearest neighbors are rarely from the same stratigraphic level.  

 -Stratigraphic position does not predict position in MDS space.  
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Multi-dimensional scaling of A) individual samples and B) equivalent stratigraphic samples. Both axes show dimensionless measure of dissimilarity (see methods). Key date populations are 
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value for each model (see methods). (C-D) Stacked probability curves of reported (see methods for data sources) U/Pb dates from detrital zircon within stratigraphic equivalents of the 

C) Belt/Purcell Supergroup and D) Lemhi subbasin. Colored boxes denote prominent date populations, see text for description. Internal consistencies (see definition of terms) are 
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Quantifying spatial trends 

 

Results 

 

-Dates homogenize towards the southern end of the basin,  

-Unique Archean date populations in the east  

-NAMG dates are biased to the north and west.  

-Dissimilarity is positively correlated with distance  

 between sample locations.  

-Average D value exceeds 0.3 at ~200 km.  

-Internal consistency decreases with increasing distance  

 between samples.  

-Trends are dampened in Missoula Group samples.  

- Yavapai-Mazatzal-Mojave dates (1.65-1.80 Ga) increase to  

 the south (with a break occurring at the Garnet Line) 

-NAMG dates (1.49-1.61 Ga) are only dominant near (<200 

 km) the Priest River block.  

-NAMG dates are nearly absent south of the Garnet line.  

-Dates >2.0 Ga, attributed to cratonic crust in the Wyoming, 

 Medicine Hat, and Hearne blocks, are only abundant 

 where the Great Falls Tectonic and Vulcan Zones inter

 sect the basin. 
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