Swimming into Science: Sharks and Minnows Summer Camp

Victor Perez and Kent Crippen

UNIVERSITY of **FLORIDA** The Foundation for The Gator Nation

<u>Summer Camp</u> <u>Overview</u>

• Who?

Elementary-aged students (Grades 3-4)

• Where?

Florida Museum of Natural History

• How long?

Five half days (June 2018)

• Theme?

STEM careers and Fish

Sharks and Minnows

Primary Goals

- 1. Increase interest and awareness of STEM careers
- 2. Identify and address misconceptions about STEM careers
- 3. Identify and address misconceptions about fish

REPORT TO THE PRESIDENT ENGAGE TO EXCEL: PRODUCING ONE MILLION ADDITIONAL COLLEGE GRADUATES WITH DEGREES IN SCIENCE, TECHNOLOGY, ENGINEERING, AND MATHEMATICS

PCAST (2012)

Theoretical Framework

Dorsen's Factors	Brief Description	Intervention Actions	
Career Awareness and	STEM careers cannot be pursued if students are	Participants were introduced to five STEM	
Decision to pursue a	not aware of them and how they are introduced to	careers.	
STEM career	those careers will influence their decision to		
	pursue those careers.		
Academic Preparation	Academic preparation should be augmented with	Camp activities were aligned to Florida's K-12	
and Achievement	informal extracurricular STEM experiences,	teaching standards (NGSSS) to augment formal	
	which will in turn enhance interest and	education.	
	performance in formal classrooms.		
Identification with	Students must envision themselves in STEM	Darticipants experienced authentic STEM practice	
STEM Concerts	students must envision themserves in STEM	and mot confu concer professionals (role models)	
SIEM Careers	careers, which can be facilitated by fole models	and met early career professionals (role models).	
	and/or real-world experiences.		
Self-efficacy	Students must feel confident in their ability to	Implemented a validated survey to measure	
	succeed in STEM careers.	attitudes towards STEM careers.	
External Environmental	Life experiences, both positive and negative,	The summer camp is a STEM-related life	
Factors	dictate a student's perception of STEM.	experience.	
(Barriers and Supports)			
Interest, Enjoyment, and	Positive childhood experiences have a strong	Participants' responses indicate an overall positive	
Motivation	impact on STEM career pathways.	experience.	

Summary of the six factors that influence students' pursuit of STEM careers from Dorsen et al. (2006).

Evaluation Plan

Front-end

(Needs Assessment)

Prior to implementation

Compromise between my interests and the museum's needs

Formative

During implementation

Students filled out scientific notebooks throughout the week (formative assessment tasks)

Summative ≻After implementation ➢Pre/Post validated survey on attitudes towards STEM careers

A Day in the Life of a Camper...

- 1. Introduce topic
- 2. Draw a Scientist Activity
- 3. Role Model Visit
- 4. Inquiry Activity 1
- 5. Museum excursion
- 6. Snack Break
- 7. Inquiry Activity 2
- 8. Inquiry Activity 3
- 9. Reflection

Day 1: Fish Anatomy and Classification

- **Driving Question:** What are fish skeletons made of?
- Learning Objectives: After day one, campers will be able to:
 - explain how living bony fish, sharks, and rays are classified.
 - relate body shape to locomotion.
 - understand the compositional differences between bone, cartilage, and teeth.
- Words to Know: Vertebrate, Chondrichthyes, Osteichthyes, Cartilage, Phosphate, Enamel, Dentine, Crown, Root
- Career Highlight: Biologist someone that studies living organisms

Day 1: Fish Anatomy & Classification

Today we will:

- explain how living bony fish, sharks, and rays are classified.
- relate body shape to locomotion.
- understand the differences between bone, cartilage, and teeth.

What are fish skeletons made of?

Camp Progression and Scaffolding

Day 1	Day 2	Day 3	Day 4	Day 5
Topic:	Торіс:	Торіс:	Торіс:	Торіс:
Fish Anatomy & Classification	Fossil Preservation	Stratigraphy	Ecology & Diet	Biomimicry
Career Highlight:	Career Highlight:	Career Highlight:	Career Highlight:	Career Highlight:
Biologist	Paleontologist	Geologist	Ecologist	Engineer

<u>Formative Assessment Task</u>: Draw-a-Scientist Test Checklist (DAST-C)

- 1. Lab Coat
- 2. Eyeglasses
- 3. Facial Hair
- 4. Symbols of Research
- 5. Symbols of Knowledge
- 6. Technology
- 7. Relevant Captions
- 1. Male Gender
- 2. Caucasian
- 3. Indications of Danger
- 4. Presence of Light Bulbs
- 5. Mythic Stereotypes
- 6. Indications of Secrecy
- 7. Working Indoors
- 8. Middle Age or Elderly
- 9. Open Comments

Chambers (1983) & Finson et al. (1995)

Preliminary Results

- Participants: N=18
 - 9 Male, 9 Female
- # of Drawings: N=80
 - Biologist: n=15
 - Paleontologist: n=18
 - Geologist: n=15
 - Ecologist: n=16
 - Engineer: n=16

Stereotype	Frequency	Uncertain
Lab Coat	15%	5%
Eyeglasses	2.5%	0%
Facial Hair	3.75%	0%
Symbol of Research	63.75%	0%
Symbol of Knowledge	11.25%	0%
Technology	83.75%	0%
Relevant Caption (ex. "Eureka!")	16.25%	0%
Male Gender	48.75%	13.75%
Caucasian	87.5%	10%
Indications of Danger	6.25%	0%
Presence of Light Bulbs	2.5%	0%
Mythic Stereotypes (ex. Mad Scientist)	22.5%	0%
Indications of Secrecy	0%	0%
Working Indoors	27.5%	3.75%
Middle aged or Elderly	2.5%	1.25%

Biologist

Ecologist

Paleontologist

Geologist

Engineer

Observations

- Does not self-identify
- Non-descript appearance
- Loss of lab coat
- Location varies with profession
- Biologist = Chemist
- Geologist is sensationalized

Biologist

Ecologist

Paleontologist

Engineer

Geologist

Observations

- Self-identifies with professions
- Depicts practice
- Change in appearance
- Location varies with profession
- Strong overlap between paleontologist and geologist

Biologist

Paleontologist

Geologist

Ecologist

Engineer

Observations

- Self-identifies with professions
- Depicts practice at high level
- Location varies with profession
- Strong differentiation between professions

<u>Summary</u>

DAST-C Results:

- Very few stereotypes about appearance, with the exception of ethnicity
 Lab coat (15%), Eyeglasses (2.5%), Facial Hair (4%), Elderly (2.5%), Caucasian (87.5%)
- Many depictions of research and technology
- Gender largely reflected participant demographic
 - 49% male (n=39), 40% female (n=32)

Awareness of STEM careers:

- Biologist were often associated with chemistry and working indoors
- Ecology was often associated with animals and working outdoors
- Geology often sensationalized as rich, gem and mineral hunters
- Geology and paleontology were very similar and always depicted outdoors
- Engineers were typically associated with fixing/building

Next Steps

- 1. Validate DAST-C results with additional coders
- 2. Apply the Draw-an-Engineer Test (DAET)
- 3. Align observed trends in drawings to written responses in journals and results of validated survey
- 4. Analyze drawings of fish and written responses to identify misconceptions

<u>Acknowledgements</u>

Bruce MacFadden Kent Crippen FLMNH Education Staff Junior Volunteers

NSF Grant No. DGE-1315138; DGE-1842473; DRL-1322725