LOS ALABORATORY NATIONAL LABORATORY EST. 1943

The hydrogeology of thermally active energy waste in bedded salt

Philip H. Stauffer

Tuesday, September 24th

175-4

Co-authors

Hakim Boukalfa, Eric Guiltinan, Michelle Bourret, Terry Miller, Brian **Dozier, Shawn Otto, Douglas** Weaver

- Los Alamos National Laboratory
- Kris Kuhlman,
- Sandia National Laboratory
- **Jonny Rutqvist**
- Lawrence Berkeley National Laboratory

rrrr

MOTIVATION

The United States needs to find a long-term solution for nuclear waste

Office of **NUCLEAR ENERGY**

DOE-Nuclear Energy(DOE-NE)

is researching

"Generic Repository concepts

through the

Spent Fuel and Waste Disposition Program

Salt, argillite, and crystalline are the three primary geologic targets

MOTIVATION

The United States needs to find a long-term solution for nuclear waste

Office of **NUCLEAR ENERGY**

DOE-Nuclear Energy(DOE-NE)

is researching

"Generic Repository concepts

through the

Spent Fuel and Waste Disposition Program

Salt, argillite, and crystalline are the three primary geologic targets

MOTIVATION

The United States needs to find a long-term solution for nuclear waste

Office of **NUCLEAR ENERGY**

DOE-Nuclear Energy(DOE-NE)

is researching

"Generic Repository concepts

through the

Spent Fuel and Waste Disposition Program

Salt, argillite, and crystalline are the three primary geologic targets

Why Salt ?

Salt long-term benefits as disposal medium

- Low connected porosity (0.1 vol-%) and permeability ($\leq 10^{-22} m^2$)
- High thermal conductivity (~5 $W/(m \cdot K)$)
- No flowing groundwater ($\leq 5 \text{ wt-}\%$ water)
- Plastic salt flows back around waste

Demonstrate understanding of repository processes

- Gain confidence in long-term predictions
- **Uncertainty reduction**
- Integrate process-level physics into performance assessment

Understand the role of pore water, fluid inclusions, and mineral dehydration

Los Alamos National Laboratory

Salt THMC Couplings

Deformation (strain) Vapor pressure lowering Porosity Thermal conductivity Permeability Capillary pressure Water vapor diffusion Clay dehydration Salinity

F(stress, time, saturation, temperature) *F*(capillary pressure, salinity) *F*(*dissolution*, *precipitation*, *stress*, *strain*) F(porosity, saturation, temperature) *F*(dissolution, precipitation, porosity, saturation) *F*(*porosity*, *saturation*, *temperature*) F(porosity, saturation, temperature) *F*(*temperature*) *F*(*temperature*) TRANSPORT - 0.4

sure (MPa) 0.07

Dehydration of salt samples

Temperature (°C)

0.3

THMC: Long-term Compaction and Sealing Example

Simulation indicates areas of 10% porosity at 1000 years (permeability ≈ 10⁻¹⁵ m²)

Zt

Y

Alamos

THC Coupling: Evaporation example

• WIPP evaporation experiment

Simulated using FEHM
fehm.lanl.gov

Simulation driven with changing drift air humidity

Brine Availability Test in Salt at WIPP (BATS)

Monitoring brine distribution, inflow, and chemistry from heated salt using geophysical methods and direct liquid & gas sampling.

2150 ft bgs

1 mile long

0.5 miles wide

12 miles of drifts

Underground Research Laboratory at WIPP

Underground Research Laboratory at WIPP

June 2018 – May 2019

Thermal testing in an existing borehole

First thermal borehole test in salt in the USA since the early 1990s

Los Alamos National Laboratory

LA-UR-XX-XXXX

BATS Shakedown: Simulations Assist Design

BATS Shakedown: Simulations Assist Design

BATS Shakedown: Modeling Improved Heater Design

Simulations require long-term pressure decay due to drifts + boreholes

Simulations require long-term saturation decay due to drifts + boreholes

BATS Shakedown Test : Water production

Water flowing into the borehole is extracted by nitrogen gas

1-D calculation with a boundary at the borehole wall

Importance of Thermal-Hydro-Mechanical-Chemical (THMC) Processes in Salt

Fluid inclusions

Performance Assessment

Safety Case

- Image: Constraint of the second se
- Roadmap
- International

Heat Pipe

Alamos

Salt Complexities

Near-field short-term complexities

- Hypersaline brine is corrosive
- Salt is very soluble in fresh water
- Brine chemistry requires Pitzer
- Salt creep requires drift maintenance

