Geochemical facies of Neoproterozoic 'snowball Earth' diamictite sequences at the Kansanshi Mine, Zambia: implications for seawater chemistry

> **TIMOTHY J. MACINTYRE** COLORADO SCHOOL OF MINES, GOLDEN, CO

Geological Society of America Phoenix, 2019

QThe Copper Club

Diamictite

- A non-genetic term for poorly sorted or non-sorted terrigenous sedimentary rock containing particles ranging in size from clay to boulders suspended in a fine-grained matrix
- Most commonly:
 - Mass flows: 'debrites'
 - Glacially derived: 'tillites'
 - Volcaniclastic deposits
- The distinctive character of diamictites permits easy recognition

Background

- Neoproterozoic 'snowball Earth' hypothesis
 - Key features:
 - Diamictites/tillites and dropstones
 - Ironstones
 - Cap carbonates
 - $\delta^{13}C$ isotope excursions
 - Ir anomalies

'Snowball Earth'

- Controversy
 - Local not global
 - Slushball/Snowball
 - Mixtite not tillite
 - Debris flows on rifted margins
 - e.g. Eyles and Januszczak, 2004
 - "tectonically-driven mass flow destroyed any primary record of glacial climate"
 - Kennedy et al., 2019 Kamoa, DRC

Neoproterozoic Katangan Basin

Basin inversion, Pan-African orogeny

Pink Dolomite (Cap Carbonate) **Petit Conglomérat** (Marinoan Glaciation)

Kakontwe Limestone (Cap Carbonate)

Grand Conglomérat (Sturtian Glaciation)

Ě

Intracratonic rift basin

Modified from M. Hitzman (after Kampunzu and Cailteux, 1999)

Central African Copperbelt

- Worlds largest concentration of stratiform Cu-Co deposits
- Sturtian diamictite found throughout
- Marinoan limited to northern portions of basin
- Metamorphic grade increases around Domes Region

Metadiamictite

- Amphibolite-facies metamorphism in western Domes Region
- Clasts strongly flattened, occasionally folded, but recognizable
- Typically garnet-biotite-quartz-schist, but varies with chemistry of protolith
- Locally termed "Pebble Schist"

Kansanshi Geology

- How to correlate stratigraphy?
- Are multiple metadiamictite units fold repetition?
 - Locally three
- 84 km of recent deep drilling with 48-element geochemistry

Kansanshi Ironstone

- Logging of new drill holes noted ironstones
 - Base of lower metadiamictite
 - Locally at top of upper metadiamictite
 - Not always present
- Lends support for folding
 - Uncertainty regarding discontinuous nature
 - Recent work proposed late hydrothermal model
 - Hendrickson et al., 2015 Fishtie
- More common in Sturtian rocks
 - Especially near base of sequence
 - Also present in Marinoan
 - Not certain which metadiamictite is upright
 - Barron (2003) suggested upper metadiamictite upright

Textural and Geochemical Variations

- Variations in garnet abundance noted
 linked to variations in Mn and Fe
- Further investigation shows distinct geochemical patterns for S, in addition to Fe+P associated with ironstones
- This lead to a more formal geochemical analysis utilizing IoGAS software

Methods

- >12000 samples from rocks logged as metadiamictite (pebble schist)
- 48 elements, 4-acid digestion, ICP-MS (ALS Chemex, ME-MS61 package)
- After QA/AC and outlier removal, 10674 samples from 103 drill holes remain
- Analysis in IoGAS to identify population clusters (point density tool)

Oxidized and Reduced Facies

Ferruginous Metadiamictite & Ironstone

- 2. Plot Fe vs P
- Samples along this trend are ferruginous metadiamictite and ironstones
- Plotting Fe vs S shows that majority have Fe/S ratio > Pyrrhotite therefore Fe-enriched

Ferruginous Metadiamictite - Subgroups

4. Plot Mn vs Fe

- subdivide into high Fe and low Fe subgroups
- note the same subgroups occur with Ti

Mn-rich Subgroups

5. Mn vs Ti plot

- Subdivide previous high Fe(Ti) and low Fe(Ti) groups based on Mn concentration
- Subgroups define a sequential progression in the transitional zone

Geochemical Facies

* This step includes all data points, not just S-rich

Geochemical Facies

Geochemical Facies

Geochemical Patterns

• Despite the complex deformation at Kansanshi the resulting geochemical patterns are surprisingly consistent

Geochemical Patterns

 The gross patterns clearly confirm (even where ironstone is absent) that the upper diamictite sequence is overturned

Geologic Interpretation

- Old Version
- Facing and internal deformation unclear

Mineralogic and Textural Variations

- Fe+P Background Ironstone High Ti S-rich Mn-rich Geochemical facies reflected in mineralogic Fe (%) 11.0 31.8 23.8 20.2 6.98 9.47 6.56 4.64 4.69 S (%) 0.07 0.39 1.25 0.84 1.48 0.13 0.72 0.05 0.17 Mn (ppm) 2020 860 1120 1440 910 3100 993 863 703 P (ppm) 4490 980 >10000 >10000 8880 1400 1100 630 690
- 23

& textural

variations

Discussion

Fully oxidized mixed ocean conditions

Transition from anoxic to oxidized rocks

- 1) P-peak (independent of Fe)
 - cyanobacterial bloom (Kirschvink et al.)
- Progressive oxidation of water column
 Fe → Mn

Ironstones in S-rich anoxic sediments

- abiotic adsorbed P

Initial anoxia, sub-ice and/or stratification

Conclusions

- Geochemical patterns suggest that paleo sea water chemistry signatures are preserved
- Progressive oxidation of the water column associated with $P \rightarrow Fe \rightarrow Mn$ sequence
 - later than ironstone formation

- Sturtian metadiamictite is recumbently folded at Kansanshi
 - Marinoan diamictite is absent
- Future work should look for similar geochemistry in un-metamorphosed diamictite sequences where sedimentology can be incorporated to merge the depositional environment and chemical architecture of the basin
 - Important implications for redox traps in Cu exploration

Thank You!

Strongly pyritic siltstone with dropstone, Kamoa, DRC

