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Landsat 8
than discharging out across the sea floor. The net
discharge is the difference between these two
components.

Coastal aquifers may consist of complicated arrays of
confined, semi-confined, and unconfined systems.
Simple hydrologic models do not consider the aniso-
tropic nature of coastal sediments, dispersion, and tidal
pumping. Moreover, cycling of seawater through the
coastal aquifer may be driven by the flow of freshwater
from coastal uplands (Destouni and Prieto, 2003). As
freshwater flows through an aquifer driven by an inland
hydraulic head, it can entrain seawater that is diffusing
and dispersing up from the salty aquifer that underlies it.
Superimposed upon this terrestrially driven circulation
are a variety of marine-induced forces that result in flow
into and out of the seabed even in the absence of a
hydraulic head. Such “subterranean estuaries” (Moore,
1999) will be characterized by biogeochemical reactions
that influence the transfer of nutrients to the coastal zone
in a manner similar to that of surface estuaries (Nixon et
al., 1996; Charette and Sholkovitz, 2002; Talbot et al.,
2003).

1.4. Drivers of SGD

SGD forcing has both terrestrial and marine compo-
nents. The following drivers of fluid flow through shelf
sediments may be considered: (1) the terrestrial
hydraulic gradient (gravity) that results in water flowing
downhill; (2) water level differences across a permeable
barrier; (3) tide, wave, storm, or current-induced
pressure gradients in the near-shore zone; (4) convection
(salt-fingering) induced by salty water overlying fresh

groundwater in some near-shore environments; (5)
seasonal inflow and outflow of seawater into the aquifer
resulting from the movement of the freshwater–
seawater interface in response to annual recharge cycles;
and (6) geothermal heating.

Hydrologists have traditionally applied Darcy's Law
to describe the freshwater flow resulting from measured
hydraulic gradients. However, when comparisons have
been made, the modeled outflow is often much less than
what is actually measured (e.g., Smith and Zawadzki,
2003). Differences in water levels across permeable
narrow reefs such as the Florida Keys (Reich et al.,
2002; Chanton et al., 2003) or barrier islands such as
Fire Island, New York (Bokuniewicz and Pavlik, 1990)
are also known to induce subterranean flow. Such
differences in sea level could be the result of tidal
fluctuations, wave set-up, or wind forcing. Pressure
gradients due to wave set-up at the shore (Li et al.,
1999), tidal pumping at the shore (Riedl et al., 1972;
Nielsen, 1990), large storms (Moore and Wilson, 2005),
or current-induced gradients over topographic expres-
sions such as sand ripples also result in SGD (Huettel
and Gust, 1992; Huettel et al., 1996). If the density of
the ocean water increases above that of the pore water
for any reason, pore water can float out of the sediment
by gravitational convection in an exchange with denser
seawater without a net discharge (Webster et al., 1996).
Moore and Wilson (2005) documented the exchange of
pore water to a depth of 1.5 m following an intrusion of
cold water onto the shelf.

An annual recharge cycle causing a seasonal inflow
and outflow of seawater within an unconfined coastal
aquifer is a new concept introduced by a team at MIT

Fig. 1. Schematic depiction (no scale) of processes associated with SGD. Arrows indicate fluid movement.

502 W.C. Burnett et al. / Science of the Total Environment 367 (2006) 498–543

Adapted from Burnett et al., 2006
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▸ Remote sensing approaches use TIR 

▸ Move to field measurements to further assess SGD 

▸ Can we go further with remote sensing data?

Adapted from Wilson and Rocha, 2012
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OBJECTIVES

IN THIS STUDY

▸ links to SST 

▸ links to color 

▸ TIR and VIS 

▸ Goal: better constrain locations of potential SGD occurrences 

▸ Explore the links between SGD and changes in SST and OC through RS 

▸ Map areas of PSGD and compare them with known locations

Visible (RGB) Thermal Infrared (TIR)
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METHODS & RESULTS

PRELIMINARY RESULTS

▸ Ocean Color vs Sea Surface Temperature 

▸ Experiments suggest that colder waters likely under 
the  
effect of SGD have different spectra (color) 

▸ Coldest and warmest waters have less color 
variability 

▸ Identified subset of colors per temperature interval 

▸ Temperature anomalies 

▸ Automatic method 

▸ Pinpoint locations
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TEMPERATURE VS VISIBLE SPECTRA

�6

5 TIR ranges

13.21

12.32

11.66

11.21

10.31

ºC

5 TIR ranges



METHODS & RESULTS

TEMPERATURE VS VISIBLE SPECTRA

▸ What colors are in each TIR range? 

▸ Quantize to 16 colors
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5 TIR ranges
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DERIVATIVE SPECTROSCOPY
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Figure 1 shows a computer
simulation of the effects of
derivatization on the appearance
of a simple Gaussian absorbance
band. Derivative spectra are
always more complex than zero-
order spectra.

A first-order derivative is the rate
of change of absorbance with
respect to wavelength. A first-
order derivative starts and finishes
at zero. It also passes through zero
at the same wavelength as !max of
the absorbance band. Either side
of this point are positive and
negative bands with maximum and
minimum at the same wavelengths
as the inflection points in the
absorbance band. This bipolar
function is characteristic of all
odd-order derivatives.

The most characteristic feature of
a second-order derivative is a
negative band with minimum at
the same wavelength as the
maximum on the zero-order band.
It also shows two additional
positive satellite bands either side
of the main band. A fourth-order
derivative shows a positive band.

A strong negative or positive band
with minimum or maximum at the
same wavelength as !max of the
absorbance band is characteristic
of the even-order derivatives.

Note that the number of bands
observed is equal to the derivative
order plus one.

Introduction

If a spectrum is expressed as
absorbance, A, as a function of
wavelength,"!, the derivative
spectra are:
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Figure 1
Absorbance and derivative spectra of a Gaussian band
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ture, and the blending of these patterns produces the spectral 
signature for turbid water. 

Each component of the composite signal can be rep- 
resented by an N t h  order polynomial. If N varies for the indi- 
vidual components, then successive differentiation of the 
original (0th order) composite curve should systematically re- 
move the lower-order effects. 

To demonstrate the effect of successive differentiation on 
a turbid water spectrum, consider the zero-, first-, and sec- 
ond-order spectra for clear water, turbid water, and algal 
chlorophyll with turbidity in water (Figures 1, 2, and 3, re- 
spectively, data collected by the methods described below). 
The zero-order (or reflectance) spectrum for clear water (Fig- 
ure 1) shows higher reflectance in the visible wavebands 
(400 to 700 nm), peaking at about 500 nm, but very little re- 
flectance in the near-infrared (700 to 900 nm), a portion of 
the spectrum strongly absorbed by liquid water (Curcio and 
Petty, 1951). Both the first-and second-order curves are vir- 
tually zero at all wavelengths. From this, we may conclude 
that most of the spectral effects of water reflection are effec- 
tively negated by the first derivative. Reflection from clear 
water can, therefore, be considered a first-order effect. Simi- 
larly, Figure 2 suggests that turbidity is a second-order effect, 
because the first-order spectral signature for turbid water ex- 
hibits a characteristic trough or depression centered at ap- 
proximately 720 nm and the second differentiation of the 
curve negates this effect. 

The zero-order spectral signature for algal chlorophyll 
combined with turbidity in water (Figure 3) is more complex 
than either clear or turbid water. In the visible region, a peak 
in the green spectrum (500 to 600 nm) which is specific to 
chlorophyll is prominent. The zero-order curve also shows a 
strong reflection peak at the redlnear-infrared boundary 
( ~ 7 0 0  nm), which is reduced further into the infrared. The 
first-order curve shows a peak at approximately 530 nm and 
a distinctive peak-and-trough pattern between 680 and 750 
nm. More significantly, the second-order curve continues to 
show a regular pattern of peak and trough at 660 and 710 
nm. This indicates that the first-order turbidity effects have 
been removed [see above discussion), and the remaining ef- 
fect is specific only to algal chlorophyll. The effects are not 
as apparent when all three curves are shown on the same 
axes due to a reduction in the magnitude of the derivatives 
with each successive differentiation. Later, several curves are 

WAVELENGTH (nm) 

Figure 1. Zero-, first-, and second-order curves for 
water with no suspended solids. 

Figure 2. Zero-, first-, and second-order curves for 
water with suspended sediments. 1 

presented with an enlarged scale which clearly shows this 
pattern. 

Methodology 
From the above discussion, it seems evident that water ef- 
fects can be removed by the first derivative and turbidity ef- 
fects by the second, leaving a curve consisting only of 
features associated with chlorophyll. We tested this hypothe- 
sis with data collected using high resolution close-range re- 
mote sensing over experimental tanks with controlled 
chlorophyll and turbidity conditions. Use of close-range in- 
struments enables spectral effects to be evaluated without the 
confounding effects of the atmosphere and viewing geometry 
encountered with aircraft or satellite data sets. 

The tanks used in these experiments were circular, with 
a diameter of 3.5 m and a depth of 0.85 m. They were lined 
with 0.15 mil black plastic to reduce internal reflec- 
tion.Spectral data were collected using a Spectron Industries 
SE-590 portable spectrometer suspended over the tanks on a 
truck-mounted telescoping aluminum boom at a height of ap- 

WAVELENGTH (nm) 

Figure 3. Zero-, first-, and second-order curves for 
water with suspended sediments and algal chloro- 
phyll. 

Adapted from Goodin et al., 1993Adapted from Owen, 1995
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PDF of 2nd derivative per cluster
Green: Change of signal in the 2nd derivative  

Purple: temperature lower than the mean 
White: both conditions
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CHALLENGES AND LIMITATIONS

▸ Limitations  

▸ Experiment with other locations and seasons 

▸ Refine clustering steps, further analyze descriptors 

▸ Focus on coastal areas, where SGD is more likely to occur 

▸ Limited matching with the expected (lab) spectrum 

▸ Possible solutions 

▸ more bands/coverage over the red-edge
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CASE STUDY
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adjacent Kaloko-Honokohau National Historical Park of
!7,000 m3 d"1 km"1. These comparisons show that the
point-source freshwater outputs documented by our TIR
mapping are focused and amplified several times over
background non-point-source regional SGD.
[12] Regional SGD nutrient characteristics are illustrated

by plots of silica, nitrate, and phosphate concentrations
relative to salinity (Figures 3b–3d). Linear regressions of
these data for ocean surface waters of the region (salinities
7–35) show clear linear seaward decreases of all nutrients
with increasing salinity, indicating conservative mixing and

dilution with ambient seawater (the one exception being
anthropogenic inputs of phosphate to Honokohau Harbor;
see auxiliary material). These linear trends show no net
apparent biological nutrient draw-down in ocean surface
waters, despite substantial nutrient loading from SGD (a
phenomena previously observed by Dollar and Atkinson
[1992]), although our regional observations of nutrient
loading and seaward mixing do not preclude biological
utilization. If there is biological uptake of these nutrients
(as one might expect), it is masked by the very high rates of
nutrient supply.

Figure 1. Sea surface temperature (SST) map produced from August 2005 aerial TIR survey over coastal waters in the
vicinity of Kaloko-Honokohau National Historical Park, located on the west coast of the Island of Hawaii. The SST image
is a temperature-corrected, georectified mosaic of 135-m wide swath images with a spatial resolution of 0.5 m. White
triangles in the inset indicate the positions of 31 major (surface area >13,000 m2) point-sourced SGD plumes identified by
TIR imagery. See text for discussion of integrating surface water nutrient concentrations into the TIR image.

L15606 JOHNSON ET AL.: TIR AND GROUNDWATER INPUTS L15606

3 of 6

Adapted from Johnson et al., 2008Landsat 8 2019-04-06 20:42:41 UTC
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Adapted from Johnson et al., 2008Landsat 8 2019-04-06 20:42:41 UTC

Sentinel-2A 2019-04-06 21:05:51 UTC
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Adapted from Goodin et al., 1993
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ture, and the blending of these patterns produces the spectral 
signature for turbid water. 

Each component of the composite signal can be rep- 
resented by an N t h  order polynomial. If N varies for the indi- 
vidual components, then successive differentiation of the 
original (0th order) composite curve should systematically re- 
move the lower-order effects. 

To demonstrate the effect of successive differentiation on 
a turbid water spectrum, consider the zero-, first-, and sec- 
ond-order spectra for clear water, turbid water, and algal 
chlorophyll with turbidity in water (Figures 1, 2, and 3, re- 
spectively, data collected by the methods described below). 
The zero-order (or reflectance) spectrum for clear water (Fig- 
ure 1) shows higher reflectance in the visible wavebands 
(400 to 700 nm), peaking at about 500 nm, but very little re- 
flectance in the near-infrared (700 to 900 nm), a portion of 
the spectrum strongly absorbed by liquid water (Curcio and 
Petty, 1951). Both the first-and second-order curves are vir- 
tually zero at all wavelengths. From this, we may conclude 
that most of the spectral effects of water reflection are effec- 
tively negated by the first derivative. Reflection from clear 
water can, therefore, be considered a first-order effect. Simi- 
larly, Figure 2 suggests that turbidity is a second-order effect, 
because the first-order spectral signature for turbid water ex- 
hibits a characteristic trough or depression centered at ap- 
proximately 720 nm and the second differentiation of the 
curve negates this effect. 

The zero-order spectral signature for algal chlorophyll 
combined with turbidity in water (Figure 3) is more complex 
than either clear or turbid water. In the visible region, a peak 
in the green spectrum (500 to 600 nm) which is specific to 
chlorophyll is prominent. The zero-order curve also shows a 
strong reflection peak at the redlnear-infrared boundary 
( ~ 7 0 0  nm), which is reduced further into the infrared. The 
first-order curve shows a peak at approximately 530 nm and 
a distinctive peak-and-trough pattern between 680 and 750 
nm. More significantly, the second-order curve continues to 
show a regular pattern of peak and trough at 660 and 710 
nm. This indicates that the first-order turbidity effects have 
been removed [see above discussion), and the remaining ef- 
fect is specific only to algal chlorophyll. The effects are not 
as apparent when all three curves are shown on the same 
axes due to a reduction in the magnitude of the derivatives 
with each successive differentiation. Later, several curves are 

WAVELENGTH (nm) 

Figure 1. Zero-, first-, and second-order curves for 
water with no suspended solids. 

Figure 2. Zero-, first-, and second-order curves for 
water with suspended sediments. 1 

presented with an enlarged scale which clearly shows this 
pattern. 

Methodology 
From the above discussion, it seems evident that water ef- 
fects can be removed by the first derivative and turbidity ef- 
fects by the second, leaving a curve consisting only of 
features associated with chlorophyll. We tested this hypothe- 
sis with data collected using high resolution close-range re- 
mote sensing over experimental tanks with controlled 
chlorophyll and turbidity conditions. Use of close-range in- 
struments enables spectral effects to be evaluated without the 
confounding effects of the atmosphere and viewing geometry 
encountered with aircraft or satellite data sets. 

The tanks used in these experiments were circular, with 
a diameter of 3.5 m and a depth of 0.85 m. They were lined 
with 0.15 mil black plastic to reduce internal reflec- 
tion.Spectral data were collected using a Spectron Industries 
SE-590 portable spectrometer suspended over the tanks on a 
truck-mounted telescoping aluminum boom at a height of ap- 

WAVELENGTH (nm) 

Figure 3. Zero-, first-, and second-order curves for 
water with suspended sediments and algal chloro- 
phyll. 
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mote sensing over experimental tanks with controlled 
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confounding effects of the atmosphere and viewing geometry 
encountered with aircraft or satellite data sets. 
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Landsat 8 (3—4)

DERIVATIVE SPECTROSCOPY — LANDSAT 8 VS SENTINEL 2

Sentinel 2 (3—4) Sentinel 2 (4—5)
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SPECTRAL ANGLE MAPPER

Adapted from Park et al.. 2007

Adapted from Goodin et al., 1993 Resampled to Landsat 8 (5 bands)

Resampled to Sentinel 2 (8 bands)
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SPECTRAL ANGLE MAPPER

Landsat 8 
Lowest 5% SAM

Sentinel 2 
Lowest 5% SAM
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SPECTRAL ANGLE MAPPER

adjacent Kaloko-Honokohau National Historical Park of
!7,000 m3 d"1 km"1. These comparisons show that the
point-source freshwater outputs documented by our TIR
mapping are focused and amplified several times over
background non-point-source regional SGD.
[12] Regional SGD nutrient characteristics are illustrated

by plots of silica, nitrate, and phosphate concentrations
relative to salinity (Figures 3b–3d). Linear regressions of
these data for ocean surface waters of the region (salinities
7–35) show clear linear seaward decreases of all nutrients
with increasing salinity, indicating conservative mixing and

dilution with ambient seawater (the one exception being
anthropogenic inputs of phosphate to Honokohau Harbor;
see auxiliary material). These linear trends show no net
apparent biological nutrient draw-down in ocean surface
waters, despite substantial nutrient loading from SGD (a
phenomena previously observed by Dollar and Atkinson
[1992]), although our regional observations of nutrient
loading and seaward mixing do not preclude biological
utilization. If there is biological uptake of these nutrients
(as one might expect), it is masked by the very high rates of
nutrient supply.

Figure 1. Sea surface temperature (SST) map produced from August 2005 aerial TIR survey over coastal waters in the
vicinity of Kaloko-Honokohau National Historical Park, located on the west coast of the Island of Hawaii. The SST image
is a temperature-corrected, georectified mosaic of 135-m wide swath images with a spatial resolution of 0.5 m. White
triangles in the inset indicate the positions of 31 major (surface area >13,000 m2) point-sourced SGD plumes identified by
TIR imagery. See text for discussion of integrating surface water nutrient concentrations into the TIR image.

L15606 JOHNSON ET AL.: TIR AND GROUNDWATER INPUTS L15606
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SUMMARY

MAIN FINDINGS
▸ Ocean Color vs Sea Surface Temperature 

▸ More bands / spectra coverage may help to improve certainty 

▸ Time-coinciding TIR imagery is beneficial 

▸ Cold plumes may not be the coldest in the scene, but they are still colder than surrounding waters 

▸ Angular distance more robust than change of signal of the derivative

�20

LIMITATIONS / NEXT STEPS
▸ Missing other areas of potential SGD 

▸ There are limited close joint-overpasses between L8 and S2 

▸ Just one target spectrum particular to a limited and 
controlled area 

▸ Experiment with other spectra

▸ Tackle areas where upwelling events are common 

▸ Integrate currents and wind data 

▸ Quantitative validation and uncertainty quantification 

▸ Use existing ground truth data
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Thank you, comments are appreciated! 

julio.caineta@pitt.edu
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“Colored” bays were being masked as belonging to areas with 
medium probability clouds (green px on the figure in the right). 
Left figure: true color image overlayed with classification (light 
green is medium prob cloud; blue is water) 
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Review
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Sawyer et al., 2016



!38Groundwater typically moves at an average velocity on 
the order of only 1 m (3.28 ft) or less per day, whereas dry-
weather streamflow rushes at a rate of about 1 m per second  
— a difference of five orders of magnitude.

Disposition of rainwater falling on land is schemati-
cally presented in Figure 2.1. The real world is far more 
complex, as will be discussed later. This exercise serves 
the purpose of showing only the major dispositions and 
the two very different time periods during which some 
of the hydrologic elements dominate over the others. 
A common schematic representation of the hydrologic 
cycle is shown in Figure 2.2.

5SBOTQPSU�$ZDMF

Water quality is altered continuously as water journeys 
through the natural environment. The transport cycle 
describes the cycle of creation, transport, and disposition 
or fate of the water-quality parameters that are associated 
with the different hydrologic elements of the water cycle. 
The traits of water quality can augment the flow data in 
identifying the origin, circulation, and distribution of 
water in the environment.

A pioneering study relating geochemical processes to 
the elements of the water cycle was conducted in San Joa-
quin Valley, California (Davis et al. 1959). These processes 
include incorporation of a small amount of windblown 

Figure 2.2. Hydrologic cycle and global average annual water balance. Numbers are annual volume of major components in units 
relative to that of land precipitation of 100. (Reprinted from Chow et al. 1988 with permission from McGraw-Hill Companies)

� )ZESPMPHJD�$ZDMF� ��

Lau, L. S., & Mink, J. F. (2006). Hydrology of the hawaiian islands. Retrieved from http://ebookcentral.proquest.com
Created from pitt-ebooks on 2019-03-08 01:57:53.

C
op

yr
ig

ht
 ©

 2
00

6.
 U

ni
ve

rs
ity

 o
f H

aw
ai

i P
re

ss
. A

ll 
rig

ht
s 

re
se

rv
ed

.

Chow et al., 1988



!39

d. Metrics

Evaluation of an analysis and resulting dataset is dif-
ficult when most of the pertinent data are incorporated
into the final product. Nevertheless we identify three
metrics of success. First, the new flux estimates are
compared at the global scale with those of Trenberth
et al. (2011) and Oki and Kanae (2006) and at the con-
tinental scale with those of Trenberth and Fasullo
(2013). The previous estimates are judged to be signifi-
cantly different if they lie outside of the new estimates’
error bounds, which represent approximately one stan-
dard deviation. Second, the initial and optimized un-
certainty estimates are compared with residuals of the
preoptimization (observed) water budgets at multiple
scales. A residual that was much larger than the esti-
mated total uncertainty would suggest that uncertainty
in one or more of the fluxes was overly optimistic
(small). Third, the difference between the observed and
optimized estimates of any variable should be smaller
than the uncertainty in that variable; otherwise, the
predicted uncertainty was overly optimistic.

5. Results

a. Mean annual fluxes

The mean annual fluxes of the global water cycle and
associated uncertainty ranges are depicted in Fig. 2. The

white numbers are the original ‘‘observed’’ fluxes and
uncertainties from either a single preferred source or an
average over multiple estimates. The blue numbers are
the estimates resulting from water cycle closure using
the optimization technique described in section 4. In
both cases the uncertainties may be interpreted as rep-
resenting on standard deviation. Annual precipitation,
evapotranspiration, and runoff over the global land
surface are estimated to be 116 500 6 5100, 70 600 6
5000, and 45 900 6 4400km3 yr21, respectively, after
optimization. The global land precipitation number is
very close to the value of 117 000 km3 yr21 deduced by
Schneider et al. (2014) using just a gauge data set (the
same gauge dataset used by GPCP), but for a different
period and using a slightly different adjustment for
gauge undercatch. Annual precipitation and evapora-
tion over the global ocean surface are estimated to be
403 500 6 22 200 and 449 400 6 22 200 km3 yr21 after
optimization (the equivalence of the errors is co-
incidental). For reference, the capacity of the Great
Lakes is about 23 000 km3 (Fuller et al. 1995), and
mankind’s global, annual water footprint related to ag-
riculture, industry, and domestic water supply is about
9100km3 yr21 (Hoekstra and Mekonnen 2012), so the
magnitudes of these freshwater fluxes are staggering.
The optimization routine produces revised error esti-
mates as a standard output. Narrowing of the un-
certainty range is a natural statistical response to the

FIG. 2. Mean annual fluxes (103 km3 yr21) of the global water cycle, and associated un-
certainties, during the first decade of the millennium. White numbers are based on observa-
tional products and data integrating models. Blue numbers are estimates that have been
optimized by forcing water and energy budget closure, taking into account uncertainty in the
original estimates.
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4. Conclusion

The main focus of this study was on the global scale
offset between 10 year mean groundwater temper-
atures (GWT) and satellite-derived land surface
temperatures (LST). A total of 2 548 shallow GWT
measurement points in 29 countries and two overseas
territories are utilized to analyze the offset
DT ¼ GWT" LST. We find that GWTs are warmer
than LST in 83% of all measurement points. The
average offset is 1.2 ± 1.5 K with highest differences
between GWT and LST in both the warmest and
coldest areas of Earth. These high offsets are linked to
evapotranspiration, which alters the latent heat
flow and therefore surface energy balance, and snow
cover, which insulates warm GWTs during the winter.
We are able to quantify the influence from ET and
snow cover and to describe the global offset between
GWT and LST as a superposition of both effects.
Hence, global shallow groundwater temperatures
can be estimated using only satellite-derived data.
However, it is important to note that groundwater

flow is not yet considered. A previous study by
Benz et al (2016) found that, on a city scale, the
Pearson correlation coefficient between GWT and
LST can be increased by 6% to 10%, if groundwater
flow is scrutinized. Additionally, GWT anomalies
caused by other regional effects such as geothermal
hotspots, fossil groundwater and subsurface urban
heat islands cannot be resolved with the presented
method. Still, the proposed estimation technique
provides shallow global GWTs with a RMSE of
only 1.4 K and a coefficient of determination R2

of 0.95.
Additionally, the found link between the offset,

snow cover and evapotranspiration can be applied to
future climate scenarios. With above ground temper-
atures rising due to climate change (IPCC 2013)
GWTs are expected to increase as well. However,
climate change also impacts snow cover and evapo-
transpiration and we can therefore assume that GWTs
will increase at a different rate than LSTs. In areas
where snow cover is decreasing, our results imply that
the offset between GWT and LST will decrease and

(b) Estimated groundwater temperature
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Figure 4. (a) Estimated offset between land surface temperatures (LST) and shallow groundwater temperatures (GWT). Shown are
the total offset DTTotal ¼ DTET þ DTS as well as the individual offsets caused by evapotranspiration (DTET ) and snow cover (DTS).
(b) Estimated shallow GWTs.
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ASTER L1T Band 14 
(10.95 - 11.65 µm) to ºC

Mask land Temperature histogram

Mask clouds 
T >T̅ − σT  

Mask hotspots 
T<T̅+2σT 

Mask average 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Morphological opening Histogram stretch 
Rescale intensity

Histogram stretch 
Gamma adjustment 

Mask extrema 
Local minima
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Select close to coast 
1 km buffer

SGD plumes 
automatically detected

Mask extrema 
NOT(Local maxima OR Local minima)

PROS

▸ Automatic method 

▸ Pinpoint locations

CONS

▸ May not work everywhere (untested) 

▸ Assumptions may need fine tuning
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