Pressure coring in marine sediments: Insights into gas hydrate systems and future directions

Gas hydrates

~160x volume at atmospheric conditions

Gas hydrates

- Link to ocean and atmosphere C pools
- Potential role in climate feedbacks

- Potential energy resource
- Potential for CO₂ storage

Ruppel and Kessler, 2017 Rev. Geophys.

Challenge of pressure coring

- Hydrate dissociates
- Almost all gas lost
- Sediment disturbance
- Pore water anomalies
- Temperature anomaly

Expedition 311 Scientists, 2006 Proc IODP

Lithified carbonates

Challenge of Pressure Coring

- Hydrate intact
- Dissolved gas present
- Sediment fabric preserved
- Pore water reflects in situ concentrations

Development of pressure coring

1990s

1970s/1980s

2000s

6

2010s

How do pressure cores work?

Hybrid Pressure Core Sampler

Kubo et al., 2014, Sci. Drilling

In situ methane concentration, hydrate saturation

Paull et al., 2000, Ann. NY Acad Sci

Gas composition

 δ^{13} C-CH₄ (‰ VPDB)

Genetic classification from Milkov and Etiope, 2018 *Org Geochem*. Phillips et al., in revision, *AAPG Bull;* Lorenson et al., 2008, *JMPG;* Lorenson and Collett, 2000; *Proc ODP;* Claypool et al., 2003, *Proc ODP;* Lorenson and Collett, 2018 *JMPG;* Dixit et al., in press, *JMPG;* Brooks et al., 1984 *Science;* Brooks et al., 1986 *Org Geochem;* Sassen et al., 1999a *GCAGS;* Sassen et al, 1999b *Org Geochem,* Sassen et al., 2001a *JMPG;* Sassen et al., 2001b *Geology,* Pohlman et al., 2005 *Org Geochem;* Lein et al., 1999 *Geo-Mar Lett;* Ginsburg et al., 1999 *Geo-Mar Lett;* Cunningham and Lindholm, 2000 *AAPG Memoir 73*

Lithologic control of hydrate saturation

Cascadia margin turbidites (IODP 311)

Andaman Sea ash layers

Torres et al., 2008, EPSL

Pressurized core analysis and transfer

Pressure Core Analysis and Transfer System (PCATS), Geotek, Inc.

- Cores can be scanned for
 - P-wave velocity,
 - gamma ray density
 - X-ray CT

Schultheiss et al., 2011, ICGH

• Pressurized cores can be transported to shore, stored, and analyzed at multiple labs

In situ properties

Gulf of Mexico channel levee (UT-GOM2-1)

Phillips et al., in revision, AAPG Bull.

Reservoir/seal geomechanical properties

- Permeability
- Compressibility
- Shear strength
- Stiffness
- Consolidation
- What are these properties in hydratebearing sediments before and after dissociation?
- Can we economically and safely produce hydrate?
- How are hydrate deposits charged with gas?

Future directions – microbial processes

- Capability to sample and cultivate microbes without depressurization
- Can better target limits of life and better understand microbial methane production

Ongoing efforts by Georgia Tech, USGS, Oregon St, UT-Austin

Santamarina et al., 2012, Sci. Drilling

Future directions – slope stability

- What is the distribution of hydrate and free gas at updip stability?
- How does this affect slope stability?

Skarke et al., 2014 Nat. Geosci.

Summary

- Pressure coring and analysis tools have allowed for characterization:
 - Gas hydrate concentration
 - Gas hydrate composition
 - Physical properties
 - Geomechanical properties

Linked to specific lithologies

- Scientific drilling programs were critical in the development of this technology
 - DSDP, ODP, IODP, multiple national hydrate expeditions
- Pressure coring has potential for increasing understanding:
 - Subseafloor biosphere
 - Submarine slope failures