THE ROLE OF GEOSCIENCES IN COASTAL COMMUNITY RESILIENCE STRATEGIES: A CASE STUDY AT PORT FOURCHON IN THE MISSISSIPPI RIVER DELTA PLAIN, USA

Diana Di Leonardo, Mike Miner, Tim Carruthers, Scott Hemmerling, Ryan Clark, Zachary Cobell, Soupy Dalyander, Christine DeMeyers, Colleen McHugh, Brendan Yuill

September 24, 2019 Geological Society of America, Fall Meeting 2019

PROJECT AREA

Barataria-Terrebonne Basin Louisiana

GEOLOGIC SETTING

RAPID COASTAL EVOLUTION

Highest documented relative sea level rise rate in North America ~9 mm/yr (NOAA 2019)

RAPID COASTAL EVOLUTION

Highest documented shoreline retreat rate in North America

~3 km/century (Miner et al. 2009)

RAPID COASTAL EVOLUTION

Highest documented land loss rate in North America

~28 km²/year for 1932 – 2016 (Couvillion et al. 2017)

ECOLOGICAL SETTING

High ecological value

- Marsh and beach habitat
- Fisheries
 - eg: shrimp and oysters
- Migratory bird stop over

MOTIVATION

High economic value

- Strategically located to support offshore oil and gas industry
- Over 90% of U.S. Gulf of Mexico offshore oil and gas activities are serviced in Port Fourchon
- There is a need to develop an adaptation plan for the next 3 decades.

MOTIVATION

Channel Dredging

- Increase depth of the Belle Pass channel to allow larger ships to access the Port
- Create a rig repair facility to service deep water vessels
- Generate 20 million cubic yards of sediment suitable for marsh creation
- Sediment starved system
 - Need ecosystem-based approach to sediment management

PUBLIC PRIVATE PARTNERSHIP

Partnership for Our Working Coast

 Combine the resources and expertise of public, private, and non-governmental organizations to enhance coastal habitat and provide protection to critical infrastructure and communities.

TRANSDISCIPLINARY

Water Institute Interdisciplinary Team

- Geologists
- Ecologists
- Modelers
- Geographers
- Anthropologists
- Urban Planners

Stakeholders

- Port representatives
- Workers at Port Fourchon
- Port tenants
- Local teachers
- Area residents
- Local non-profits

Goals

- Protect infrastructure
- Promote ecosystem services
- Enhance community risk and resilience
- Promote carbon sequestration

Nature Based Approach

- Build wetlands, not seawalls
- Use scientific method to:
 - Prioritize and optimize the type, size, location, configuration, and character of wetlands constructed
 - Maximize project benefits, life-span, and ecosystem function

Activity 1: Develop Risk and Resilience Framework

- Identify stakeholder group: snowball sampling approach
- Create community risk and resilience
 framework
- Workshop #1 with stakeholder group

Activity 2: Data Collection and Initial Model Development

- Data collection
- Initial model development
 - 30-year Landscape Evolution Simulations
 - Delft3D with Integrated Biophysical Model
 - Hydrodynamics, nutrient and vegetation dynamics, morphodynamics

- Empirical morphodynamic model
 - Barrier headland and island evolution
- Simulations will include:
 - Future with no action
 - Wetland creation (3-4 alternative scenarios)
 - Sea-level rise
 - Storms (ADCIRC and SWAN)

Activity 3: Participatory Modeling and Future Scenario Development

- Workshop #2 with stakeholder group
- Model refinement based on stakeholder input and other field data
- Workshop #3 with stakeholder group
- Finalize future scenarios and project alternatives for further evaluation

Activity 4: Project Evaluation and Prioritization

- Model simulations for alternatives and future scenarios
- Social Return on Investment Analysis
- Final project evaluation and prioritization

Activity 5: Risk and Resilience Assessment Tool and Preliminary Project Design

- Workshop #4 to share results
- Create preliminary project design
- Risk and Resilience Assessment Report

CONCLUSIONS

- Plan for interdisciplinary and transdisciplinary work from the beginning.
- Involve all team members in key decisions.
- Stakeholder engagement is central to project organization and occurs at multiple points during the process.
- Incorporate stakeholder engagement in meaningful ways.

THANK YOU

Diana Di Leonardo ddileonardo@thewaterinstitute.org

@THEH2OINSTITUTE

1110 RIVER ROAD S., SUITE 200, BATON ROUGE, LA. 70802 225-448-2813 WWW.THEWATERINSTITUTE.ORG

CONCLUSIONS

- Plan for interdisciplinary and transdisciplinary work from the beginning.
- Involve all team members in key decisions.
- Stakeholder engagement is central to project organization and occurs at multiple points during the process.
- Incorporate stakeholder engagement in meaningful ways.

REFERENCES

- Couvillion, B. R., Beck, H., Schoolmaster, D., & Fischer, M. (2017). Land area change in coastal Louisiana from 1932 to 2016. U.S. Geological Survey Scientific Investigations Map 3381, 16.
- GIS Engineering, LLC. (2018). Port Fourchon Belle Pass Channel Deepening Project, Fourchon, Louisiana, Draft Environmental Impact Statement (EIS) (p. 147).
- Hemmerling, Scott A, Monica Barra, Harris C. Bienn, Melissa M. Baustian, Hoonshin Jung, Ehab Meselhe, Yushi Wang, and Eric White. In Press. "Elevating Local Knowledge through Participatory Modeling: Active Community Engagement in Restoration Planning in Coastal Louisiana," *Journal of Geographical Systems.*
- Meselhe, Ehab, Yushi Wang, Eric White, Hoonshin Jung, Melissa M Baustian, Scott Hemmerling, Monica Barra, and Harris Bienn. In Press. "Development of a Local Knowledge-Based Predictive Tools to Assess Effectiveness of Natural and Nature-Based Solutions for Coastal Restoration and Protection Planning." *Journal of Hydraulic Engineering*.
- Miner, M. D., Kulp, M. A., FitzGerald, D. M., Flocks, J. G., & Weathers, H. D. (2009). Delta lobe degradation and hurricane impacts governing large-scale coastal behavior, South-central Louisiana, USA. *Geo-Marine Letters*, 29(6), 441–453.
- National Oceanic and Atmospheric Administration Tides & Currents. (2019, July 15). Sea Level Trends -8761724 Grand Isle, Louisiana. <u>https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8761724</u>. Accessed July 15, 2019.
- Rice, M. (2013). Spanning disciplinary, sectoral and international boundaries: a sea change towards transdisciplinary global environmental change research? *Current Opinion in Environmental Sustainability*, *5*(3–4), 409–4

PORT FOURCHON

PROJECT MOTIVATION

• Historical and projected land loss demonstrates importance of optimizing beneficial use of limited sediment resources.

Figure from Belle Pass draft EIS

