In the New Discovery section of the Mammoth Cave System in Kentucky, USA, there is a deposit consisting predominantly of Big Clifty sandstone with a total volume of about 1300 m3 that caves have named Mt. Ararat. This is a chaotic, angular, roughly inversely graded deposit with grain sizes ranging from clay through boulders larger than 1 m on an edge. The angularity of the material in this deposit indicates it has not experienced significant abrasion and therefore is believed to have been transported only a relatively short distance over a short time period. We thus interpret this as a cave diamict deposit (Bosch and White, 2018) resulting from a debris flow event. Determination of the mechanism and timing for this event has implications for the geomorphic history of the Mammoth Cave system; behavior of debris flows in caves, narrow canyons, or other confined spaces; and evaluation of the relative contributions to cave development from mechanical and chemical erosion.