
Figures 1&2: Simplified geologic map showing the regional extent of the SNB and relative ages of plutonic and wallrock units; study area 
shown with dashed red line (left). Map of study area intrusive suites and their respective age ranges, based on Lackey et al. (2008) and 
Coleman et al. (2004).
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Recent studies have proposed intriguing crystallization processes in relatively cold, 
sub-solidus conditions (Challener and Glazner, 2017; Ackerson et al. 2018) of 
granitoid rocks in the Sierra Nevada batholith (SNB). Such discoveries beg deeper 
investigation of the transition from magmatic to sub-solidus conditions in arc 
batholiths and hold potential for understanding their changing thermal state during 
the waxing and waning of magmatism. Understanding of this sub-solidus realm also 
bears on the fluid mediated formation of ore deposits and modulation of volatile 
fluxes (e.g., CO2). In this work, we have examined Pb-U systematics and trace 
element chemistry of both primary, euhedral titanite and co-existing, texturally late, 
anhedral titanite from ~30 rocks in the western, central, and eastern Sierra Nevada. 
In particular we sought to 1) evaluate relative Pb-U ages of titanite and zircon; 2) to 
probe the chemistry of secondary titanite as a recorder of the sub-solidus history of 
individual rocks as well as trends across the batholith. 

1. Motivation 4. Titanite Trace Elements

2. Sierra Nevada Titanite

6. Models 
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3. Titanite Pb-U

Figure 10: Variations of δ18O in primary and secondary titanite with respect to δ18O of zircon. Inset 
diagrams depict scenarios of expected δ18O variation: (A) differing magmatic δ18O, (B) variable 
temperature of growth (or diffusive exchange), and (C) shifts expected from meteoric water 
exchange. Note the very low δ18O values (< 2‰) of secondary titanite for two samples. Overall, a 
dearth of unusually low δ18O values suggests that incursion of exogenous or meteoric water was 
limited, but deuteric fluid alteration, commonly indicated by retrogression of mafic minerals and 
feldspars, was likely widespread. Data compiled from Lackey et al. (2008) and Lackey (2005). 
Isotherms after King et al. (2001).

Figure 3: Textures of primary and 
secondary titanite. Primary titanite in top row 
shows euhedral look and is associated with 
feldspar, but often occurs in association with 
hornblende and/or biotite. Backscattered 
electron (BSE) image showing in second 
row, showing oscillatory zoning in primary 
and sector zoning in primary titanite 
crystals. Middle-right sample from 1S91 
showing color difference between primary, 
brown-orange titanite and pale, secondary 
titanite from same rock. In third row, 
petrographic details of secondary titanite 
growth which typically is finer grained and 
forms coronas around oxides and where 
biotite is altered to chlorite.  
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Figure 4: Tera-Wasserburg Concordia arrays defined by various SNB titanite 
(primary and secondary designated with different colors where analyzed). An 
additional 2% uncertainty is applied to the internal uncertainty of interpreted 207Pb-
corrected intercept titanite ages. Weighted Mean Pb-U plots of primary and 
secondary titanite samples display slightly different coordination in some cases. 
207Pb-corrected 206Pb/238U zircon ages from unpublished data and Lackey et al. 
(2012) shown for reference.

Figure 7: Zr-in-titanite apparent temperatures against selected major and trace 
element graphs of hand-picked primary and secondary titanite. (A) Aluminum (Al) 
concentrations in secondary titanite showing a subtle increase as apparent 
temperature decreases. (B) As seen in other REEs (Fig. 8), neodymium (Nd) 
concentrations tend to be higher in primary titanite versus secondary titanite. (C) 
Secondary titanite exhibiting a higher degree of Eu/Eu* magnitudes and variation 
compared to primary titanite.

Figure 9: Titanite Tera-Wasserburg Concordia age diagram, REE plot, and histogram 
illustrating two different titanite populations from Sample 17GH3. Majority of the titanite 
within the samples analyzed are igneous (magmatic) and have trace element patterns 
consistent with magmatic growth. Secondary titanite has lower total REEs and positive 
Eu anomalies suggesting growth in equilibrium with deuteric fluids. 

7. Key Points

Experiments: Primary and secondary 
titanite was hand picked from concentrates. 
Pb-U ages were measured at UC Santa 
Barbara after Kylander-Clark et al. (2013) 
and at Pomona College’s Oxtoby Isotope 
Lab via laser ablation on an Agilent 8900 
triple quadrupole mass spectrometer in He 
cell gas configuration. Titanite BLR and Y17 
were employed as primary and secondary 
standards at UCSB. The Pomona lab 
employed MKED-1 and BLR-1 as primary 
standards for U-Pb and trace element 
concentrations, respectively. Previous 
titanium EMPA results of typical Sierra 
titanite were used as internal elemental 
standard values. NIST 612 was also 
analyzed as a validation standard for trace 
element determinations. Data was reduced 
using Iolite data reduction software.

Figure 8: REE spider diagrams of SNB primary (red) and secondary (yellow) titanite, 
normalized to Chondrite from Sun-McDonough (1989) with corresponding 207Pb-corrected 
206/238 intercept ages.

• Titanite ages often post-date U-Pb zircon, confirming patterns originally identified by Chen and Moore (1982); higher precision geo- 
and thermochronology will be needed to establish how cooling regime affects apparent age offsets.  

• Secondary titanite shows distinct budget-limited depletion of REEs and greater variety in overall chemistry reflecting a mix of 
closed and open-system processes over a range of temperatures. 

• Small, older plutons adjacent to large, late Cretaceous intrusive suites show lag of titanite U-Pb ages by up to 10 m.y., potentially a 
record of protracted growth, or re-crystallization (Schwartz et al. 2016), or potential thermal resetting. 

• On a cautionary note, some late-stage titanite post-dates igneous crystallization ages by 10s of millions of years which warrants 
caution when interpreting detrital titanite U-Pb ages, in absence of REE patterns.  

• Ongoing work is assessing intracrystalline patterns of Pb/U age and trace element concentration to establish if diffusional resetting 
or multiple growth episodes (e.g. Schwartz et al. 2016) explain marked age discrepancies in some titanite with igneous REE 
patterns.  

• Overall, we note that Sierra Crest plutons have closer agreement of U-Pb age of zircon and titanite, suggesting that younger 
plutons saw a more rapid cooling, thus greater match of zircon and titanite U-Pb age. Western plutons, which may have seen 
titanite grow in response to changes of redox state in the sub-solidus, do not present a clear signal between diffusional Pb loss. We 
infer that growth of substantially younger (up to 10 million years) titanite was initiated as younger magmas caused re-equilibration 
of Fe-Ti oxide minerals with the younger deuteric fluids.
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Figure 5: Correspondence of age for zircon and titanite shows 
variable offset to younger age of titanite compared to zircon, 
although often within error of the 1:1 dashed line which indicates 
analogous age. Some cases of titanite are up to 15 million years 
younger than zircon. Samples of Chen and Moore (1982) shown 
for reference.
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Figure 6: Backscattered electron (BSE) images of representative titanite 
samples in this study. Images show location of laser spots and values 
obtained via mass spectrometer. Rim-rim traverses across zoning and 
textural boundaries were performed. 
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Mono Creek Granite (1S124)
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Mount Whitney Granite (W-35)
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Titanite:
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N

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

78
80

82
84

86

mean = 81.940 ± 0.091 | 0.182 | 0.212 Ma (n=63 64)
MSWD = 1.36, p(χ2) = 0.031

238U/ 206Pb

20
7 Pb

/20
6 

 Pb

REE

REE

REE

Primary
Titanite

BT

Plag

Qtz

Hbld

Ox

Ox

Secondary 
Titanite

REE

REE

REE

REE

REE

Eu

Chl

5. Oxygen Isotopes

• Primary titanite is not present in all 
rocks, reflecting variable oxidation state 
in the various Sierran magmas (e.g., 
titanite + magnetite + quartz = 
hedenbergite + ilmenite + O2) Wones 
(1989); and primary titanite may 
crystallize late during magmatic reaction 
of pyroxene to form hornblende, titanite, 
and ilmenite (Frost et al. 2001): 
Hedenbergite + ilmenite + H2O = 
ferroactinolite + titanite +ulvöspinel.  

• Stable by possible reactions 
• REEs more uniformly budgeted

• Secondary titanite textures suggest 
a general pattern of increasingly 
oxidized systems and breakdown of 
pre-existing Ti-bearing phases in 
localized environments. REEs more 
heterogeneous as titanite competes 
with self 

• Large positive Eu anomaly is 
suggesting more oxidized fluid 

• Alternatively, liberation of Eu2+ with 
deuteric alteration of plagioclase 
may fix Eu concentrations and 
convert negative anomalies to 
positive anomalies. 
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