Coastal monitoring using UAS to track changes in beach morphology: Waikīkī, Hawai'i

Kristian McDonald, Chip Fletcher, Tiffany Anderson, & Korey Wong

University of Hawai'i at Mānoa Department of Earth Sciences Coastal Geology Group

70% of beaches on O'ahu, Maui, and Kaua'i are chronically eroding

Hawai'i's coastal erosion is expected to double by mid-century²

¹ Romine, Bradley M., and Charles H. Fletcher. "A summary of historical shoreline changes on beaches of Kauai, Oahu, and Maui, Hawaii." *Journal of Coastal Research* 29.3 (2012): 605-614. ² Anderson, Tiffany R., et al. "Doubling of coastal erosion under rising sea level by mid-century in Hawaii." *Natural Hazards* 78.1 (2015): 75-103.

70% of beaches on O'ahu, Maui, and Kaua'i are chronically eroding¹

Hawai'i's coastal erosion is expected to double by mid-century²

A **need** for cost-efficient tools for effective, empirically-based coastal management

¹ Romine, Bradley M., and Charles H. Fletcher. "A summary of historical shoreline changes on beaches of Kauai, Oahu, and Maui, Hawaii." *Journal of Coastal Research* 29.3 (2012): 605-614. ² Anderson, Tiffany R., et al. "Doubling of coastal erosion under rising sea level by mid-century in Hawaii." *Natural Hazards* 78.1 (2015): 75-103.

Total Station and Rod	Unmanned Aerial Systems		
-8 hours in the field	~1 hour in the field		
Difficult in crowded conditions, relies on line of sight	Bird's eye view		
Undersampled	Very high resolution (~3 cm/pix)		
Nearshore data	Limited to subaerial beach		
	Relatively cheap, readily available, easy to use, variety of data products		

Study Area: Waikīkī Beach

Google Earth

DEO-Columbia, NSF, NOAA NOAA, U.S. Navy, NGA, CEB

- Completely human-engineered system
- Economic importance \$2.2 billion/year
- Culturally significant

Compartmentalized littoral cell

- Compartmentalized littoral cell
- Chronically eroding consistent loss of subaerial beach year to year

- Compartmentalized littoral cell
- Chronically eroding consistent loss of subaerial beach year to year
- Primarily influenced by summer south swells and the occasional storm or hurricane

- Compartmentalized littoral cell
- Chronically eroding consistent loss of subaerial beach year to year
- Primarily influenced by summer south swells and the occasional storm or hurricane
- Weekly surveys for 8 months (April -November 2018)

Sparse Cloud - Rudimentary 3-D model based off of common points across photos

Iterative error analysis to delete the worst of the points based on uncertainty parameters

Dense Cloud - Robust point cloud based off most accurate points of the sparse cloud

Orthomosaic - Geometrically corrected mosaic of photos

04/12/2018

Dense Cloud Processing: LAStools

 Stable structures on the beach require removal

or /d %%i in (%IN_DIR%*) do (

cd "%%i"
echo Current directory: %%i

IF EXIST "%IN_DIR%\mask_Beach.shp" (

) ELSE (ECHO Polygon for clipping not found. No clippin

rmdir temp /s /q
mkdir temp

rmdir temp\tiles_raw /s /q
mkdir temp\tiles_raw
echo Created clean tiles_raw folder in temporary di

IF EXIST "*_clip.laz" (
 lastile -i *_clip.laz ^

^{di}rapid<mark>las</mark>so

Dense Cloud Processing: LAStools

- Stable structures on the beach require removal
- Wave run-up at the foreshore results in noise unable to resolve surface due to movement

	· · · · · · · · · · · · · · · · · · ·			
ىسى بىرى بىرى بىرى بىرى بىرى بىرى بىرى ب		Marine to see the second s	and the second desired and the second se	
the second se	The second second second second second second second second	where the state of the state of the state of the state of the	and the second secon	And the second second second second
	A 19 1 A	and the second		

 Correlate variations in surface area and volume with conditions

- Correlate variations in surface area and volume with conditions
- Overall increase in both surface area and volume

- Correlate variations in surface area and volume with conditions
- Overall increase in both surface area and volume
- Several erosion/recovery events

- Correlate variations in surface area and volume with conditions
- Overall increase in both surface area and volume
- Several erosion/recovery events
- Beach volume behavior relative to surface area

- Empirical Orthogonal Function (EOF) analysis used for spatiotemporal data analysis of a single field (i.e. elevation)
 - Useful where data representing a snapshot in time is linked to spatial dimensions (northing and easting, latitude and longitude, etc)
 - Finds "spatial patterns of variability, their time variation, and gives a measure of the 'importance' of each pattern"
- These patterns can be correlated to specific wave conditions and events
- Gives insight into sediment transport mechanisms related to these conditions or events

Mode 1 (51% variability): Congruent Transport, 2 Cells Closed system? Cross-shore exchange? 2 subcells

Directionality of sand transport is consistent in both cells

Tandem

Mode 2 (12% variability): Non-congruent Transport, 2 cells

Open system, channel accretion? (Habel et al., 2012) Again, 2 subcells within greater system

Directionality of sand transport is opposite in both cells

Mode 3 (11% variability): Cross-shore Transport Mode

Opposing cross-shore transport at ends of the beach Central beach remains constant

Tidally driven transport?

Mode 4 (8% variability): Seasonal Inflation/Deflation

Entire system operates as a single cell

Inflation of west end of the beach, deflation of east end of beach during summer season

Uncertainty

- Currently engaged in uncertainty analysis
- Validating the accuracy of UAS generated point cloud/DEM
 - Post-processed DTM vertical variation < 3 cm
- Validating cross shore profile assumptions
 - Interpolation area from seaward-most UAS generated point and toe measurement

Uncertainty

- Currently engaged in uncertainty analysis
- Validating the accuracy of UAS generated point cloud/DEM
 - Post-processed DTM vertical variation < 3 cm
- Validating cross shore profile assumptions
 - Interpolation area from seaward-most UAS generated point and toe measurement

Takeaways

Waikīkī Beach

- Overall increase in surface area and volume over study period
- Clear association between beach response and wind/waves
- West end of beach generally accretes, east end erodes
- Lack of offshore information a limitation

UAS and Coastal Monitoring

- UAS capable of providing high-resolution, near-real time, actionable results
- Capture smaller scale beach dynamics
- Efficient reduces hours in the field

HAU'OLI MAU LOA F D U N D A T I D N

