In the Land of Black and White, Microbial Deposition of Ferromanganese on the Walls of Snowy River, Ft Stanton Cave, NM

> Michael Spilde, Jason Kimble, Diana Northup University of New Mexico Penelope Boston New Mexico Institute of Mining & Technology and NASA Ames Research Center

Fort Stanton Cave

The Snowy River Passage

Ft Stanton Cave: 50+ km of surveyed passage (14th longest in US) Snowy River: 19.1 km long and still going!

1.5

John Ganter Photo

Geology of Ft Stanton Cave

- Cave is hosted in Permian San Andres Limestone
 - Soils above the cave developed in mainly limestone and Tertiary gravels (stay tuned for the next talk!)
 - Likely source of water in Snowy River is 6 km to SW

Natural History of Snow River Passage

- Large passage forms
- Silt & clay deposited on walls/floor

- Sand & pebbles deposited
- Mn-oxide on wallsSnowy River calcite

Ferromanganese

Directly on bedrock

5RS 47 355 28W

Thin coating on mud

Evidence of multiple episodes of growth

Ferromanganese Coatings

May be patchy and discontinuous

Or cover nearly every surface

Victor Polyak Photos

Ferromanganese Coatings

2

5-youngest

1-oldest

3

Faint lines of Mn-oxid

Evidence of regrowth after the Mn-coated mud peeled away in several episodes

FMD Coatings in the SEM

Root-like structures

Wispy Mn-oxide sheets

EPMA Analysis of FMD

- Polished section prepared without carbon-based epoxy
 - Section of Mn-oxide crust on mud collected from cave
 - Sample vacuum impregnated with Na-silicate solution
 - Evaporated copper used for conductive coating instead of carbon for electron probe analysis

	CO ₂	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	MnO ₂	Fe ₂ O ₃
Mn- oxide	5.00	7.91	2.06	5.13	20.48	0.59	1.70	42.06	4.67
Mn- oxide	3.54	8.52	1.52	6.25	15.54	0.50	1.86	48.18	4.17
Clay	0.61	2.74	1.10	14.24	66.40	1.96	0.90	2.57	5.24

EPMA Mapping of FMD

- X-ray maps on polished section
 - Higher carbon associated with FMD
 - Maps show 2 layers of FMD crust
 - Crust inundated with mud then regrowth

Mn C

Metagenomic Dataset from FMD

Number of hits for each domain

By percent of each domain

Top six bacterial phyla

Top archaeal phyla

Mn Oxidation in Oligotrophic Cave Systems

Mn oxidation driven by chemolithoautotrophic bacterial breakdown of bedrock (hypogene caves) Mn oxidation driven by nutrient input from exogenous carbon in water, clay, etc. (epigene caves)

Conclusions

- Careful preparation of samples allows EPMA analysis of carbon
- FMD is associated with higher carbon, likely the result of microbial activity
- Microbial community in FMD is dominated by heterotrophic bacteria, chemolithoautotrophs rare
- Nutrients/metals supplied by water & detrital material
- FMD deposition has continued over time and is still active in the cave

Acknowledgements

- Funding by NASA Exobiology for EPMA & SEM analysis
- BLM (Knutt Peterson, Roswell Office) for cave access & sampling permits
- Funding & assistance from Fort Stanton Cave Study Project (Steve Peerman, Director)

