Quantifying the magnitude and spatial variability of bedrock erosion beneath the Sisters Glacier, Washington using cosmogenic \(^{3}\)He concentrations

Sarah Francis\(^1\), Doug Clark\(^1\), Ken Farley\(^2\), Colin Amos\(^1\), Paul Bierman\(^3\)

\(^1\) Western Washington University, Bellingham, WA; \(^2\) California Institute of Technology, Pasadena, CA; \(^3\) University of Vermont, Burlington, VT.

Introduction

Cirque glaciers are common in temperate mountains around the world, and thereby a dominant agent for erosion in these high mountain settings (e.g., Anderson, 1976; Larsen and Mangelsdorf, 1981; National Snow and Ice Data Center, 2017). The processes and rates of this erosion, however, are not well-understood (Koppes et al., 2015). Current understanding of cirque-glacial erosion rates and mechanisms is limited. Published values for cirque-glacial erosion rates are rare and highly variable (0.001-10 mm/yr), and mostly rely on indirect estimates from sediment volumes (e.g., Sanders et al., 2013; Herman et al., 2015) or theoretical models (Sirotenko, 2013; Anderson, 2014). Cosmogenic nuclide analyses provide a tool to infer cirque-glacial erosion depths at a relatively high spatial resolution (Briner and Swanson, 1998; Crest et al., 2017). It accumulates in bedrock exposed at the surface as a result of cosmic ray bombardment. The concentration of cosmogenic \(^{3}\)He increases with exposure time as well as proximity to the surface (Gosse and Phillips, 2001). With an independent estimate of surface exposure age, cosmogenic \(^{3}\)He concentrations can be used to infer erosion depths on glaciated bedrock surfaces (Figure 1). The spatial variability of erosion can be used to infer mechanisms of erosion. Spatially variable erosion indicates a plucking-dominated environment, whereas spatially consistent and decreasing downslope indicates an abrading-dominated environment (Figure 2).

Study Location

The Sisters Glacier is located in the Twin Sisters Range, North Cascades, Washington, and is composed entirely of ultramafic dunite (~97% olivine) bedrock (Christensen, 1971). Figure 3. The range is part of the North Cascades, which extend from central Washington State to southwestern British Columbia. The Twin Sisters Range is an ideal location for this type of study because cosmogenic \(^{3}\)He is produced rapidly in olivine and can be measured after relatively short periods of surface exposure (<1,000 years, Kira and Brook, 1994). Detailed Holocene glacial chronologies from nearby Mount Baker indicate that the Holocene forefield of the Sisters Glacier was likely exposed around 11,000 years ago following Pleistocene deglaciation, exposed to cosmic rays for 9,000 years, and then covered by Neoglacial ice for 2,000 years until the last century (Figure 1, Cagle et al., 1997; Konanan and Esterbroek, 2001; Menounos et al., 2009; Oshorn et al., 2012). This detailed proxy record of Holocene glacier extents for the Sisters Glacier provides a crucial constraint on timing of Holocene glaciation necessary to estimate rates of erosion beneath the glacier.

Methods

• Field mapping, lidar data, and aerial imagery were to identify bedrock fractures, glacial features, historic glacial extents, and terminal moraines in the forefield of the Sisters Glacier: used to establish the Holocene maximum glacial extent (Figure 4). Bedrock samples were collected along glacial flow-line transects in the forefield (Figure 4), and cosmogenic \(^{3}\)He concentrations were measured in these samples to estimate Holocene cirque-glacial erosion depths.

• Cosmogenic \(^{3}\)He was measured in several "lowland" sites outside the extent of Holocene glaciation to test if warm-based Pleistocene glaciation eroded enough material to remove cosmogenic \(^{3}\)He from prior exposure (Figure 4). Standard crushing methods to remove mantle-sourced \(^{3}\)He were not successful in dunite rock; we thus calculated cosmogenic component based on \(^{3}\)He/\(^{4}\)He ratios in shielded samples (1.8-2.8 RA) collected from a nearby quarry (Figure 5).

Results and Conclusions

We were unable to remove mantle-sourced \(^{3}\)He from our samples with conventional crushing methods, analyzing different grain size fractions of several exposed samples had no significant effect on \(^{3}\)He concentrations (Figure 6). However, all shielded samples showed a normalized \(^{3}\)He/\(^{4}\)He ratio of 1.69-3.72 Ra, with an average of 2.3 Ra (r=0.89, Figure 7). Our analyses of lowland samples show two exposure ages older than expected, two younger, and two approximately consistent with late-Pleistocene deglaciation (Figure 8). This suggests that Pleistocene deglaciation did not remove all cosmogenic \(^{3}\)He from prior exposure in all samples, and that some samples had unaccounted for shielding. However, similar cosmogenic inheritance is unlikely in forefield samples because none of the samples had exposure ages older than 11,000 y. Our analyses of forefield samples show decreasing model exposure ages (10,000-5 y) and concomitant increasing depths of erosion (0.13-1.6 cm) with proximity to the modern glacier (Figure 9). Patterns in erosion rates are less clear due to larger uncertainties, but potentially show increasing rates of subjulglacial erosion (0.001-0.7 mm/yr) with proximity to the modern glacier (Figure 9). The relatively low magnitudes and consistent patterns of erosion suggest that abrading and/or small plucking events (continued to deformation) are the dominant mechanisms of erosion underneath the Sisters Glacier.

Acknowledgments: Thank you to the Northwest Scientific Association, the Geological Society of America, Western Washington University Graduate School, Washington State University Undergraduate Research Council, and the PNW Network for their support in this research project. For more information about this research, please contact Sarah Francis at sarahfrancis@wwu.edu.

References

Cagle, M., Kira, I.S., and Brook, E.J., 1997. Holocene and Neoglacial glacial chronologies from nearby Mountain Baker indicate that the Holocene forefield of the Sisters Glacier was likely exposed around 11,000 years ago following Pleistocene deglaciation, exposed to cosmic rays for 9,000 years, and then covered by Neoglacial ice for 2,000 years until the last century (Figure 1, Cagle et al., 1997; Konanan and Esterbroek, 2001; Menounos et al., 2009; Oshorn et al., 2012). This detailed proxy record of Holocene glacier extents for the Sisters Glacier provides a crucial constraint on timing of Holocene glaciation necessary to estimate rates of erosion beneath the glacier.
Dunne, T., and Mudd, S.M., 2014. Results of field-borne analysis showing exposure ages (\(t\)), erosion depths (\(d\)), and erosion rates (\(V\)) of the study area. A map shows the relationship between exposure and erosion rates and the amount of \(^{3}\)He that is released.
Gosse, J. and Phillips, C., 2001. Summary of cosmogenic nuclides (\(^{3}\)He/\(^{4}\)He and \(^{10}\)Be/\(^{9}\)Be), and Inventory of cosmogenic nuclides in various types of rock.
Koppes, K., Kohn, S., and Bierman, P., 2015. Current understanding of cirque-glacial erosion rates and mechanisms is limited. Published values for cirque-glacial erosion rates are rare and highly variable (0.001-10 mm/yr), and mostly rely on indirect estimates from sediment volumes (e.g., Sanders et al., 2013; Herman et al., 2015) or theoretical models (Sirotenko, 2013; Anderson, 2014).