MOUNTAIN RANGE, CENTRAL CALIFORNIA

Research Motivation and Overview

Over the past several decades, a large body of work explored the
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increase from north to south, implying increase in sediment transport thresholds
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Preliminary Conclusions

- Coordinated adjustment among channel steepness, interfluve
curvature, and grain size variations reflects spatial variations
in rock uplift and/or erosion rate toward the south

- Increase in median of grain size distribution and its variance
suggests that the thresholds for sediment transport develop
as a consequence of variable erosion rate

- Variations in thresholds for sediment transport could be an
important control on the non-linear scaling relationship
between channel steepness and erosion rate

- An estimate of catchment-averaged erosion rate by analyzing
cosmogenic "Be concentration in quartz-bearing sediment
from 12 active channels along the ridge

- The model of channel adjustment to erosion rate,
incorporated with variable thresholds of sediment transport

- The degree to which grain size variations modulate the
adjustment of channel steepness and hillslope morphology
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Sediment delivered from the eroded
watershed can be used to determine
erosion rate at watershed-scale that
is inversely proportional to cosmo-
genic nuclide concentrations

Sediment samples were collected at
the outlet of the watershed, as a
representative of eroded sediment
from upstream contributing area

@ Sampling channel sand for cosmo-
genic nuclide determination from
first-order streams and watersheds
along the ridge
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