EVALUATING THE DEPENDENCE OF SEDIMENT CALIBER ON EROSION RATE IN A COASTAL MOUNTAIN RANGE, CENTRAL CALIFORNIA

Pichawut Manopkawee1 and Eric Kirby1
1College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, 97331

Research Motivation and Overview

Over the past several decades, a large body of work explored the rates and patterns of landscape deformation in tectonically active orogenic systems where boundary conditions are known from both theoretical framework and observations. These works reveal that landscape relief adjustment to differential rock uplift is largely governed by the response of channel networks. This effect represents as a positive, non-linear scaling relationship between channel steepness (a measure of channel gradient normalized for differences in contributing drainage areas) and erosion rate (e.g. Kirby and Whipple, 2012). This reflects the relative influences of variable channel discharge, rock mass quality, and thresholds for erosion and sediment transport (e.g. Lague et al., 2005; DiBiase and Whipple, 2011). Although the grain size distribution of sediment supplied by hillslopes controls hillslope transport and channel incision, characterization of systematic variation in grain size on differential rock uplift and/or erosion rates has proven difficult in most field sites.

Here, we propose to evaluate the association among hillslope and channel morphology, sediment delivery, and erosion rate by combining topographic analysis of channel and hillslope morphology with a measurement of grain size distributions along a discernible field site of erosion rate gradient in a coastal mountain range, central California.

Preliminary Observations

- Normalized channel steepness indices (k_n) derived from slope-area regression have been used to detect zones of differential rock uplift and/or erosion rate
- k_n systematically increases fourfold to sixfold from north to south along the ridge
- Ridgetop curvatures have primarily changed when ridges respond to rock uplift and/or erosion rate
- Curvatures of ridgetop, illustrated as the average value for all individual data points with low values of the drainage area-gradient product, negatively increase from north to south
- Median of the grain size distribution (D_{50}) and the variance in the population (D_{50}, D_{90}) increase from north to south, implying increase in sediment transport thresholds toward the south

Acknowledgements

The graduate studies and work have been supported by the Royal Thai Government Scholarship, Geology Program Travel Award, and GSC Travel Award, CEGAS, Oregon State University. Thanks for 2019 Geology Society of America Graduate Student Research Grant for making continued work possible.

Many thanks to Eric Kirby, Andrew Meigs, Stephen Lancaster, and Gordon Grant for important discussions, opinions, findings, and conclusions. Thanks, Yann Gavillon for helping the process and sample preparation. Thanks, Frank Souza, Elton Lemont, Mackenzie Mark-Moser, Grace Sethanant, Danielle Wooding, and Marta Marcelli for great support and wonderful research moment.

Finally, thanks to many excellent field assistants: Hon Kanop, Qiu Su, Peng Su, and Bin Zhang.

References

- Granger, D.E., & Schaller, M. (2014). Cosmogenic nuclide determination from upstream contributing area: An estimate of catchment-averaged erosion rate by analyzing cosmogenic 10Be concentration in quartz-bearing sediment from 12 active channels along the ridge
- Qi Su, Peng Su, and Bin Zhang.
- Finaly, thanks to many excellent field assistants: Hon Kanop, Qiu Su, Peng Su, and Bin Zhang.

Future Work

- An estimate of catchment-averaged erosion rate by analyzing cosmogenic ¹⁰Be concentration in quartz-bearing sediment from 12 active channels along the ridge
- The model of channel adjustment to erosion rate, incorporated with variable thresholds of sediment transport
- The degree to which grain size variations modulate the adjustment of channel steepness and hillslope morphology
- Preliminary Conclusions
- Coordinated adjustment among channel steepness, interfluve curvature, and grain size variations reflects spatial variations in rock uplift and/or erosion rate toward the south
- Increase in median of grain size distribution and its variance suggests that the thresholds for sediment transport develop as a consequence of variable erosion rate
- Variations in thresholds for sediment transport could be an important control on the non-linear scaling relationship between channel steepness and erosion rate

Field Study Site