The Generation of Hot-Spot Related Calc-Alkaline Andesites of the Strawberry Volcanics, Northeast Oregon.

WASHINGTON STATE UNIVERSITY

Arron Steiner Washington State University And Martin Streck Portland State University

Introduction

	and a state
1. O	O
118°W	117°W

120°W

119°W

AS-SV-144 R Plag 15.34 0.52 8 98.38 AS-SV-179 R GM 15.30 0.1 7 89.20 AS-SV-190 14.79 0.12 100.00 R Glass 10 AS-SV-173 R Biotite 14.70 0.13 89.22 8

* repeat

^a A, andesite; BA, basaltic andesite, R, rhyolite

^b GM, groundmass, Plag, Plagioclase

Mafic and Intermediate Lavas

Typical Mafic/intermediate lavas with a total volume ~1,100 km³

- Massive stacks of lavas up to ~1000 m in height
 ~5-10 m thick
- Basalts are cohesive flows and can have columnar joints ophitic texture
- Andesites tend to be platy

•No visual differences between calc-alkaline and tholeiitic lavas

Plateau

			1 intout			
Sample	Rock Type ^a	Material Dated ^b	Age (Ma)	Steps $\pm (2\sigma)$ Plateau ³⁹ Ar, %		
AS-SV-291	A	GM	15.59	0.36	4	72.07
AS-SV-159c	BA	GM	15.57	0.16	8	94.37
AS-SV-156	А	GM	14.87	0.13	6	87.43
AS-SV-188	А	GM	14.59	0.26	8	99.20
AS-SV-82	А	GM	14.21	0.26	-	88.91
AS-SV-14	BA	GM	13.76	0.16	9	85.41
AS-SV-230	BA	GM	13.53	0.24	5	70.78
AS-SV-109	В	GM	12.61	0.08	13	47.27
AS-SV-192	А	GM	12.52	0.12	9	98.84

* repeat

^a A, andesite; BA, basaltic andesite, R, rhyolite

^b GM, groundmass, Plag, Plagioclase

Mafic and Intermediate Pyroclasts

Phreatomagmatic Eruption

Palagonite and bomb sags

Whole Rock Geochemistry

LILEs (Rb,Ba Pb and Cs) increase with increasing silica

HFSE (Nb, Ta, Zr, Hf, and Y) and REEs decrease of remain the same with increased silica

Calc-alkaline vs. Tholeiitic lavas

Incompatible trace elements argue for both FC and mixing processes.

High Nb group falls along FC trend

As the silica enriches and the transition to calc-alkaline occur, FC processes cannot produce this trend.

Mixing with rhyolite and/or contamination from the basement rock can generate the trace elements

• FC from a parental basalt can produce the enriched trace elements

• Mixing with an SV type rhyolite can produce the low abundance trace elements

Calc-alkaline olivine and pyroxene are generally not in equilibrium with the melt but is in equilibrium with the basalt and tholeiitic intermediates

Generation of Calc-alkaline Lavas of the Strawberry Volcanics

- Parental lavas of the SV are tholeiitic
- Trace element patterns are nearly identical between the tholeiitic lavas and the calcalkaline lavas
- FC can produce the High Nb tholeiitic group

- Calc-alkaline lavas become more depleted with silica enrichment
- Mixing with co-eruptive rhyolite can dilute the trace elements and cover compositional range

Comparison to the CRBG

Comparison to the CRBG

Comparison to the CRBG

CPX Thermobarometry

CPX Thermobarometry

Temperature C

Hiatus of mafic/intermediate activity between ~16 to 15.5 Ma.

Proposed outline of crustal reservoirs. (Wolff et al., 2008 and Streck et al., 2015)

CPX Thermobarometry

Strawberry, Powder River, Weiser Volcanics and CRB erupt after silicic eruptions.

Proposed outline of crustal reservoirs. (Wolff et al., 2008 and Streck et al., 2015)

What's Left to do? The Other Calc-Alkaline Volcanism.

No ICPMS trace element data for Weiser or Powder River calc-alkaline for a similar study

•Weiser Volcanic Field

- Includes tholeiitic basalts, and mildly calcalkaline andesites, and rhyolites
- Rhyolites
 U/Pb age of 16.396 ± 0.008 Ma
 (Dennis Feeney IGS)
- Andesites

Ar/Ar plateau age of 15.1 ± 0.16 (Dennis Feeney IGS)

•Basalts

U/Pb of Ash confines an age of 14.901 ± 0.014 Ma (Dennis Feeney IGS)

What's Left to do? The Other Calc-Alkaline Volcanism.

Conclusions

- Tholeiitic and calc-alkaline lavas have similar geochemistry and a common parent basalt.
- Calc-alkaline lavas must be derived from open system processes while tholeiitic lavas can be generated by FC.
- Major and trace element geochemistry overlaps with the CRBG.
- Trace element and isotopic ratios suggest a similar melting source to the CRBG.
 - Specifically Steens and Imnaha
- Mineral chemistry of the calc-alkaline lavas indicate they may have been more primitive lava prior to interacting with rhyolite or crust
- Thermobarometry of cpx indicate variable crystallization depths and may suggest a crystal mush than discrete magmatic chambers.
 - This may provide an exchange in mush product and generate variable but common magma types
- No crystallization of cpx between 0 -~6 km
 - Rhyolite may be stored in this zone and preventing mafic and intermediate magmas to the surface
 - After the rhyolites erupt, the mafic and intermediates are able to ascend through the crust and may interact with leftover liquids or crystal residue.