
Arron Steiner
Washington State University
And Martin Streck
Portland State University
Rhyolites

Total volume ~ 100 km³

<table>
<thead>
<tr>
<th>Sample</th>
<th>Rock Type</th>
<th>Material Dated</th>
<th>Age (Ma)</th>
<th>± (2σ)</th>
<th>Steps</th>
<th>Plateau</th>
<th>39Ar, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS-SV-151</td>
<td>R</td>
<td>GM</td>
<td>16.16</td>
<td>0.17</td>
<td>7</td>
<td>86.00</td>
<td></td>
</tr>
<tr>
<td>AS-SV-144</td>
<td>R</td>
<td>Plag</td>
<td>15.34</td>
<td>0.52</td>
<td>8</td>
<td>98.38</td>
<td></td>
</tr>
<tr>
<td>AS-SV-179</td>
<td>R</td>
<td>GM</td>
<td>15.30</td>
<td>0.1</td>
<td>7</td>
<td>89.20</td>
<td></td>
</tr>
<tr>
<td>AS-SV-190</td>
<td>R</td>
<td>Glass</td>
<td>14.79</td>
<td>0.12</td>
<td>10</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>AS-SV-173</td>
<td>R</td>
<td>Biotite</td>
<td>14.70</td>
<td>0.13</td>
<td>8</td>
<td>89.22</td>
<td></td>
</tr>
</tbody>
</table>

* repeat

a A, andesite; BA, basaltic andesite, R, rhyolite

b GM, groundmass, Plag, Plagioclase
Mafic and Intermediate Lavas

Typical Mafic/intermediate lavas with a total volume ~1,100 km3

- Massive stacks of lavas up to ~1000 m in height
 - ~5-10 m thick
- Basalts are cohesive flows and can have columnar joints ophitic texture
- Andesites tend to be platy
 - No visual differences between calc-alkaline and tholeiitic lavas

<table>
<thead>
<tr>
<th>Sample</th>
<th>Rock Typea</th>
<th>Material Datedb</th>
<th>Age (Ma)</th>
<th>± (2σ)</th>
<th>Steps Plateau</th>
<th>39Ar, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS-SV-291</td>
<td>A</td>
<td>GM</td>
<td>15.59</td>
<td>0.36</td>
<td>4</td>
<td>72.07</td>
</tr>
<tr>
<td>AS-SV-159c</td>
<td>BA</td>
<td>GM</td>
<td>15.57</td>
<td>0.16</td>
<td>8</td>
<td>94.37</td>
</tr>
<tr>
<td>AS-SV-156</td>
<td>A</td>
<td>GM</td>
<td>14.87</td>
<td>0.13</td>
<td>6</td>
<td>87.43</td>
</tr>
<tr>
<td>AS-SV-188</td>
<td>A</td>
<td>GM</td>
<td>14.59</td>
<td>0.26</td>
<td>8</td>
<td>99.20</td>
</tr>
<tr>
<td>AS-SV-82</td>
<td>A</td>
<td>GM</td>
<td>14.21</td>
<td>0.26</td>
<td>-</td>
<td>88.91</td>
</tr>
<tr>
<td>AS-SV-14</td>
<td>BA</td>
<td>GM</td>
<td>13.76</td>
<td>0.16</td>
<td>9</td>
<td>85.41</td>
</tr>
<tr>
<td>AS-SV-230</td>
<td>BA</td>
<td>GM</td>
<td>13.53</td>
<td>0.24</td>
<td>5</td>
<td>70.78</td>
</tr>
<tr>
<td>AS-SV-109</td>
<td>B</td>
<td>GM</td>
<td>12.61</td>
<td>0.08</td>
<td>13</td>
<td>47.27</td>
</tr>
<tr>
<td>AS-SV-192</td>
<td>A</td>
<td>GM</td>
<td>12.52</td>
<td>0.12</td>
<td>9</td>
<td>98.84</td>
</tr>
</tbody>
</table>

a repeat
a A, andesite; BA, basaltic andesite, R, rhyolite
b GM, groundmass, Plag, Plagioclase
Mafic and Intermediate Pyroclasts

Phreatomagmatic Eruption

Palagonite and bomb sags
LILEs (Rb, Ba, Pb, and Cs) increase with increasing silica.

HFSE (Nb, Ta, Zr, Hf, and Y) and REEs decrease or remain the same with increased silica.
Calc-alkaline vs. Tholeiitic lavas

Steiner and Streck (2013)
Open or Closed System Processes?

Incompatible trace elements argue for both FC and mixing processes.

High Nb group falls along FC trend

As the silica enriches and the transition to calc-alkaline occur, FC processes cannot produce this trend.

Mixing with rhyolite and/or contamination from the basement rock can generate the trace elements
• FC from a parental basalt can produce the enriched trace elements
• Mixing with an SV type rhyolite can produce the low abundance trace elements
Open or Closed System Processes?

Mineral Data
- Basalts
 - CPX Mg#s 76 – 65
 - Olivine Fo#s 75 – 53
- Tholeiitic
 - CPX Mg#s 80 – 65
 - Olivine Fo#s 73 – 51
- Calc-alkaline
 - CPX Mg#s 85 – 60
 - Olivine Fo#s 85 – 55
Calc-alkaline olivine and pyroxene are generally not in equilibrium with the melt but is in equilibrium with the basalt and tholeiitic intermediates.
Generation of Calc-alkaline Lavas of the Strawberry Volcanics

• Parental lavas of the SV are tholeiitic

• Trace element patterns are nearly identical between the tholeiitic lavas and the calc-alkaline lavas

• FC can produce the High Nb tholeiitic group

• Calc-alkaline lavas become more depleted with silica enrichment

• Mixing with co-eruptive rhyolite can dilute the trace elements and cover compositional range
Comparison to the CRBG

Steiner and Streck (2018)
Comparison to the CRBG

Steiner and Streck (2018)
Comparison to the CRBG

Steiner and Streck (2018)
CPX Thermobarometry

~2 to 6 kbars and 1050 to 1150°C

Test for Equilibrium

Neave and Putirka (2017)
Hiatus of mafic/intermediate activity between ~16 to 15.5 Ma.

Thermobarometry indicates multiple depths of storage.

Proposed outline of crustal reservoirs. (Wolff et al., 2008 and Streck et al., 2015)
CPX Thermobarometry

Thermobarometry indicates multiple depths of storage

Rhyolites prevent CRB magmas from erupting to the surface

Thermobarometry indicates multiple depths of storage

Neave and Putirka (2017)

Strawberry, Powder River, Weiser Volcanics and CRB erupt after silicic eruptions.

Proposed outline of crustal reservoirs. (Wolff et al., 2008 and Streck et al., 2015)
What’s Left to do?

The Other Calc-Alkaline Volcanism.

No ICPMS trace element data for Weiser or Powder River calc-alkaline for a similar study

- **Weiser Volcanic Field**
 - Includes tholeiitic basalts, and mildly calc-alkaline andesites, and rhyolites
 - **Rhyolites**
 - U/Pb age of 16.396 ± 0.008 Ma
 (Dennis Feeney IGS)
 - **Andesites**
 - Ar/Ar plateau age of 15.1 ± 0.16
 (Dennis Feeney IGS)
 - **Basalts**
 - U/Pb of Ash confines an age of 14.901 ± 0.014 Ma
 (Dennis Feeney IGS)
What’s Left to do?
The Other Calc-Alkaline Volcanism.
Conclusions

• Tholeiitic and calc-alkaline lavas have similar geochemistry and a common parent basalt.

• Calc-alkaline lavas must be derived from open system processes while tholeiitic lavas can be generated by FC.

• Major and trace element geochemistry overlaps with the CRBG.

• Trace element and isotopic ratios suggest a similar melting source to the CRBG.
 – Specifically Steens and Imnaha

• Mineral chemistry of the calc-alkaline lavas indicate they may have been more primitive lava prior to interacting with rhyolite or crust

• Thermobarometry of cpx indicate variable crystallization depths and may suggest a crystal mush than discrete magmatic chambers.
 – This may provide an exchange in mush product and generate variable but common magma types

• No crystallization of cpx between 0 -~6 km
 – Rhyolite may be stored in this zone and preventing mafic and intermediate magmas to the surface
 – After the rhyolites erupt, the mafic and intermediates are able to ascend through the crust and may interact with leftover liquids or crystal residue.