Introduction

In the Early Paleozoic, there is abundant evidence for west-facing arcs
related to east-dipping subduction beneath Gondwana. Post-Taconic
collision, there is similarly abundant evidence for east-facing arcs relat-
ed to west-dipping subduction beneath Laurentia. The Laurentian pas- Step 1
sive margin was now an active Andean-style accretionary margin.

Is it possible that most if not all of northern Appalachian geology can
be explained by this essentially two-stage scenario? In particular, can
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comparing these model results with the known distribution of arc ages. | Repetition can produce a complicated pattern

This tests the hemisphere-scale model proposed by Waldron et al.

of arc and backarc ages

Can back-arc processes in a simplified model explain much of the complexity of the northern Appalachian orogen?
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(2014). The exercise yields quite good agreement and potentially a far simpler scenario to explain the
notoriously challenging tectonic puzzle of the northern Appalachian orogen.

Key Data

1) Ganderian vs. Laurentian provenance based on detrital zircon (DZ) ages

Ganderian (peri-Gondwanan) DZ age populations are distinguished by 650-520 Ma grains sourced from a Neoproterozoic arc system. Ganderian cover
rock is shown on the basemaps in yellow, including the Albee and Dead River Fms in NH and ME (Karabinos et al., 2017), Cape Elizabeth Fm. and Cook-
son Gp. in coastal ME (Schultz et al., 2008; Hussey et al., 2010), Cookson and Woodstock Gps. of NB (Fyffe et al., 2009; van Staal et al., 2016) and the
Quinebaug Fm in eastern MA (Walsh et al., 2019). The largely volcanic Ellsworth Schist is contemporaneous with the Cookson Gp. in coastal ME (Osberg
et al., 1995) and has sediments with Ganderian DZ ages (Reusch et al., 2004).

A significant addition to this list is the Moretown Fm. (MacDonald et al., 2014; Karabinos et al., 2017) which is the far-

thest-west Ganderian rock and thus a key model constraint (see basemap).
Laurentian DZ populations have ca. 1050 and 1200 Ma grains from Grenvillian crust, e.g. the Rowe Schist, west of the Moretown Fm across the Bromp-

ton-Baie Verte Line (BBVL), has Laurentian DZ signature (Karabinos et al., 2017). East of Moretown Fm, the Chain Lakes Massif (CLM) has

Laurentian DZ ages (Gerbi et al., 2006a), another key constraint.

The Cram Hill Fm. of VT overlies the Moretown Fm, has mixed Laurentian and Gondwanan DZ ages, and is considered part of the Shelburne Falls Arc
(SFA, Karabinos et al., 2017). The northern part of Cram Hill Fm. correlates with the St-Daniel of Quebec, interpreted as forearc with input from Laurentia
and an arc (Tremblay et al., 2011). In order to reconicle this, we distinguish “northern Cram Hill Fm.” (interptreted as forearc) vs. “southern Cram Hill Fm.”
(interpreted as arc). A zone of thin- to absent Cram Hill Fm. separates northern and southern parts.

2) Ganderian vs. Laurentian provenance of basement and igneous rock

Laurentian vs. Ganderian igneous rock can be distinguished based Nd and Pb isotope ratios (Tomascak et al. 2005). Ammonoosuc Volcanics (with back-
arc geochemical character, Dorais et al., 2012) have Ganderian Nd-Pb ratios, similar to the Tetagouche backarc rocks of the Mlramichi Highland in NB.
Ammonoosuc Volcanics crop out along the Bronson Hill Anticlinorium (BHA), which also hosts the Oliverian Domes. Aleinikoff et al. (2007) found a mix of
Laurentian and Ganderia isotopic ratios in the Oliverian Domes, which are arc-related plutons formed ca. 450 Ma (post-Taconic).

The SFA of VT, MA and CT is an arc on Gondwanan terrane (Karabinos and Williamson, 1994; Macdonald et al., 2014). The Cambrian to Ordovician arc
and backarc related rocks in the SE part of the study area (Miramichi Highlands, Casco Bay, Penobscot arc including Nashoba, New River and Annidale
Terranes) have Ganderian provenance (c.f., Kay et al., 2017; Hussey et al., 2010, van Staal et al., 2016; Fyffe et al., 2011). Tetagouche Gp. of NB is geo-
chemically similar to the Ammonoosuc Volcanics (Dorais et al., 2012) and represents the Tetagouche-Exploits backarc perhaps 800 km wide (van Staal et
al., 2012; van Staal and Barr, 2015). The Ascot Cplx (Notre Dame Arc) of QE is arc with Laurentian Nd character, either from underlying crust or subducted

sediment (Tremblay et al., 1994).

The Neoproterozoic arc rocks of the Massabesic Gneiss Complex (MGC) of southern NH and MA have Ganderian isotopic ratios (Dorais et al., 2012).
The Pelham Dome (MA) is either Avalonian or Ganderian basement (Aleinikoff et al., 1979; MacDonald et al., 2014)

3) Radiometric ages of arc and backarc rocks

Ages represented on the basemap and histogram are U-Pb ages of zircons taken from publications that are listed on a separate sheet (110 data points).

The 492 Ma age in the Ellsworth Terrane is pers. comm. G. Dunning.

Devonian plutonism that may be arc-related include the syntectonic NH Plutonic Series that are drawn into nappes (ca 413- 393 Ma; summarized in
Dorais (2003) and the Emsian plutons (413.5-401 Ma) and related Piscataquis Volcanic Belt (Bradley et al., 1999). “Syntectonic NHPS” refers to the Beth-

lehem, Kinsman and Spaulding Fms, which have a tectonic fabric.

4) Key Faults

The Baie Verte-Brompton Line (BVBL) and Cameron’ Line are initially a west-vergent thrust fault separating the Rowe Schist from Moretown Fm., inter-
preted as a suture between Ganderia and Laurentia (MacDonald et al., 2014; Waldron et al., 2018). In Quebec the BBVL is offest by St-Joseph normal
fault due to extension in the CT Valley - Gaspe Trough (CVGT; Tremblay and Castonguay, 2002).

The Dog Bay - Liberty Line is an east-vergent thrust fault separating Ganderian rocks with contrasting character, interpreted as the Salinic suture (Reusch

and van Staal, 2012; Dokken et al., 2018).

The Norumbega Fault shows Devonian dextral offset of perhaps 125-140 km (Ludman and West, 1999).
The Bloody Bluff Fault and equivalent in Canada are interpreted as the Acadian suture beween Ganderia and Avalonia (Hibbard et al., 2006).

5) Polarity of subduction

Penobscot (ME and NB), Nashoba (MA), Popelogan (ME), Shelburne Falls (VT, MA and CT), and Notre Dame (QE) arcs are widely interpreted to overlie
east-dipping subduction (van Staal et al., 1996; van Staal and Barr, 2012; Kay et al., 2017; Karabinos et al., 1998; Moench and Aleinikoff, 2003; DeSouza

et al., 2012; Perrot et al., 2017) spanning Cambrian through Ordovician time.

The Oliverian Domes and Quimby Volcanics of the BHA (ME, NH, MA and CT) represent arc rocks above west-dipping subduction, intruding through Lau-
rentian crust (Karabinos et al., 1998; Moench and Aleinikoff (2003). West-dipping subduction closed the ocean between Avalonia and composite Laurentia,

leading to the Acadian Orogeny (van Staal et al., 2012)
6) Paleolatitude based on magnetic data

Paleomagnetic data and plate reconstructions place the Laurentian margin at ~20° S latitude in the Cambrian, drifiting north to about 10° S in Ordovician
(Torvsik et al., 2012; Swanson-Hysell and MacDonald, 2017), aligned east-west facing south. Across the lapetus Ocean, Ganderia (in Nova Scotia) was at
roughly 50°S latitude at 500 Ma (Johnson and Van der Voo, 1985), aligned ~20° to the southeast relative to the Laurentian margin (van Staal et al, 1998).
Van Staal et al. (2012) calculated a convergence rate of 9 cm/year for the leading edge of Ganderia during closure of the lapetus, and 5 cm/yr for the trail-
ing edge, with the difference due to backarc spreading. Magnetic data from the ca. 465 Ma Tetagouche Gp. in Miramichi Highlands indicate formation at
53°S latitude (Liss et al., 1996); this implies Ganderian northj motion of 15-30 cm/yr to close the lapetus (assuming an 800 km-wide backarac remains and

10-20 m.y duration).

Methods

Database assembly

U-Pb age datapoints were placed graphically on the basemap in ArcGIS. Map outlines of rock units were drawn from state and provincial geologic maps.

Tectonic map reconstruction

We undertook an iterative process of drawing a series of to-scale maps for key geologic ages and comparing the final reconstruction with the basemap
arc ages and outcrop patterns. Where the final reconstruction differed from the basemap, we judged the cause and adjusted the map reconstructions to
decrease the variance. The arcs and terranes were treated as rigid blocks during the process of backarc spreading. During the orogenic events, shorten-

ing was allowed on the leading edge of the terranes.
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Backarc

481 Ma

Collision with Peri-Laurentian
“Chain Lakes Block”
Penobscot Orogeny

Collision of Ganderia (1)
with “Chain Lakes Block”
causes Penbscot orogeny
Laurentian sliver accretes
to Ganderia

Putnam & Nashoba

Nashoba Fm. 1. van Staal and Barr (2012) proposed
Backarc (2 collision of a seamount caused the
Penbscot orogeny.
Our “Chain Lakes Block” takes the place
of that seamount.

Putnam & Nashoba
Terranes

Model A: Penobscot Orogeny due to Ganderia collision with a Sliver of Laurentian crust
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Subduction restarts.
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Laurentia Collision with Rowe Block Laurentia Shelburne Falls Arc
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471 Ma

Casco Bay, Meductic Arcs
Ammonoosuc Backarc
Forearc contraction &

Ophiolite obuction
Hi T Low P anatexis of CLM

Forearc contraction:

Initial obduction of ophiolite over Chain Lakes Massif sediments.
Anatexis of CLM, injection of CLM-sourced granitoids into overriding TMO. (3)
High T / Low P metamorphism and anatexis in TMO and CLM suggest an

underlying heat source, perhaps due to overriding spreading center?
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Model B: Penobscot Orogeny due to Ganderia collision with lapetus spreading ridge
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oceanic crust (Future Quebec
and Boil Mtn ophiolites)

protolith)

\ Subduction restarts. \  Recycled Laurentian detritus from Rowe
ay \ Forearc spreading creates oceanic ~\ mixed with arc detritus in forearc setting
aW crust of Quebec ophiolites.

\ Boil Mtn.Ophiolite may represent
part of ocean crust, or nascent arc.
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Stewarton Gabbro

(479 +/2 Ma) 1 and 2. Karabinos et al. (2017) 3. Dorais et al. (2012)
stiches Penobscot Suture

Collision with Rowe Block.
Laurentian detritus recycled
into forearc (Chain Lakes Massif

Chain Lakes Massif protolith:
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471 Ma
Shelburne Falls Arc,

Casco Bay, Meductic Arcs
Ammonoosuc Backarc
Forearc contraction &
Ophiolite obuction

Laurentia

Forearc contraction: (1 and 2)
Initial obduction of ophiolite over Chain Lakes Massif sediments.
Anatexis of CLM, injection of CLM-sourced granitoids into overriding TMO. (3)
High T / Low P metamorphism and anatexis in TMO and CLM suggest an
underlying heat source, perhaps due to lithoshperic delamination
associated with slab break-off?

northern Cram Hill Fm

Both models similar (Model “A” shown)

Taconic Orogeny
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Ammonoosuc & Tetagouche Chain Lakes Massif4
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St-Daniel Melange
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Popelogan Inliers(z)
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1. De Souza et al. (2014)
2. van Staal et al. (2016)
3 & 4. van Staal et al. (2008)

1. Tremblay et al. (1994) 2 & 3. van Staal et al. (2008)

Salinic Orogeny

455-450 Ma
TMO obducted onto End of Taconic Orogeny 420 Ma N
Laurentian margin Onset of Salinic subduction L aurentia End of Salinic Orogeny

r ' Oliverian Dome plutons )
and Quimby Volcanics

New subduction zone,
Polarity flipped from Taconic (2)
Boil Mtn Ophiolite y

obducted to SE
onto Ganderian arc

(3)

Salinic Suture (1)
(Dog Bay - Liberty Line)

Brunswick Subduction Cplx: (2)

Imbricate thrust slices of
Fournier Oceanic block
Canoe Landing Lake block
Tetagouche block

1. Moench & Aleinikoff (2003) 1. Reusch and van Staal (2012)
2. Karabinos et al. (1998) 2. van Staal et al. (2006)
3. Gerbi et al. (2006)

SFA Arc and Ammonoosuc
Backarc obducted onto
Laurentian margin

(See X-section)

Acadian Orogeny

410 Ma

22 Acadian Plutons
7 and

23 : Connecticut Valley -

Gaspe Trough (CVGT)

backarc extension

ca. 400 Ma
End Acadian Orogeny
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Components of Motion for
Ellsworth, Annidale & New River Terranes:

413-401 Ma plutons (1)
and Piscataquis Volcx

Convergence

140 km dextral slip (!
on Norumbega Fault
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Syn-tectonic NH Plutonic Series

1. Bradley et al. (1999), 2. Dorais (2003)
1. Ludman and West (1999), Kuioer (2016)

Conclusions

1) A single-active subduction zone model can match the observed map pat-
tern of terranes and arc ages.

Two versions of the model can explain the Laurentian DZ signature of CLM.

Model A: A peri-Laurentian block carries CLM protolith relatively far off the Laurentian
margin and accretes to the Gander margin.

Model B: Laurentian detritus recycles from the Laurentian Rowe Schist protolith onto
the forearc of the Gander margin.

2) An lapetan fracture zone, separating different tectonic elements, sets up
different tectonic histories on opposing sides.

- The Penobscot Orogeny is limited to the NE side due to Gander collision with
(A) the “CLM Block” or (B) the lapetus spreading center.

- The early Taconic Orogeny is limited to the SW side due to collision with the
Laurentian “Rowe Block™.

3) The Nashoba backarc is related to the early part of the SFA, and the Am-
monoosuc backarc is related to the late part of the SFA

Conclusions (cont’d)

4) Drawing a series of scaled map reconstructions aids in

discovering cross-orogen linkages. For example:
- SFA - Nashoba
- BMO - Stewarton Gabbro

5) The Acadian syntectonic NHPS may represent a rare version
of arc volcanism wherein ascending mantle melt rises into a thick
sedimentary section undergoing contraction.

6) NH soapstone may originate from ophiolite of the Ammonoo-
suc backarc basin, brought to the surface during Acadian orogeny.

Comparison of Modeled Arcs to Age Data
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Areas for further study:

1) Paleomagnetic analysis by Liss et al. (1993) indicates Tetagouche basalts formed at 53 °S latitude, but our
model places that at 35° S.

- Fitting 53° S may require a model with an offset subduction zone with the Tetagouche side lagging behind the
SFA side.
Evidence of an offset subduction zone might be found in the complex structure along the BVBL
at the VT-QE border.

2) The model implies that the age-range minimum of the northern part of the Cram Hill Fm. (correlative to St-Dan-
iel Melange) is younger than that of the southern Cram Hill. Age data may test this.




