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How do we decide where to core?

« Why are we coring in the first place?
- Sedimentation effects of damming a corridor
- Micro- / macrofossils
- Dating / sedimentation rates
- Lake level change / paleovegetation / climate proxies

* How do we make sure we know where to core and what we’ll be
coring into for a given study?
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Where would you core?
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Background

 Coring community has known about problems with spatial
variability in New England for decades (Jacobson and
Bradshaw, 1981; Davis and Ford, 1982)

 New England shallow lake GPR is not new (Arcone, 2018)

 GPR has been used to find core sites, but infrequently and in
two dimensions (ex: Dieffenbacher-Krall and Nurse, 2005)
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Ground-Penetrating Radar (GPR) or Impulse Radar
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Ground-Penetrating Radar (GPR) or Impulse Radar
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Ground-Penetrating Radar (GPR) or Impulse Radar
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Ground-Penetrating Radar (GPR) or Impulse Radar

Permittivity (€) - Material ability to store e Cons:
or release EM energy '

- Water must be very fresh

_ gmaterial Cmaterial (typ|Ca”y <50 }J.S/m)
" facum ¢ - (Shggow)bathrmetry works best
<20 m
2, e - Doesn’t do well in hydrocarbon-rich
Air =1 layers (but better than sub-bottom
Dry snow = 1.4 acoustic)
Dry Firn = 2.2-2.6
Ice = 3.0-3.2 * Pros:
Wet snow = 4-6 - Portable, unlike sub-bottom acoustic
Granite = 6-12 (walk, ski, paddle, motor)
Permafrost = 5-6 - Can resolve stratigraphic detail
Till = 12-32 " : : -
- “Relatively inexpensive

Sands = 12-32

Water = 80-88
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Fileld scenarios
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Picking and depth calibration
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Thickness map creation
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Study site
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| Sqﬁ_pglaqi\al paleosurface is complex!
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| Sqﬁ_pglaqi\al paleosurface is complex!

/Sediment thickneS'S\ Y

anmi
L 5 _.
i i‘\i'\* 3

5 .
L N

X = bathymetric
maximum

Soft sediment thickness (m)




summary

) 2000

Methods

Distance (m

Kingsbury Pond, Kingsbury Plantation, ME

Problem

e
=

4
@)
()
(V)
c
(0]
.

4
-
(V]

©
(0]
-

©
c
@)

ol
>
(G
>

i©)
W
(@)
c

N
(V]

—
w

_I

r12-Way Tim
r 2 2-Way Time

— Laye
Laye

Introduction

Time (ns)



Introduction Problem Methods Results Ssummary

Sediment thickness i
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Summary

 Complexity has traditionally been a challenge in
the lake coring community

* GPR can help establish:
- Where to place core sites
- Stratigraphic context for sites
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Ground-Penetrating Radar (GPR) or Impulse Radar
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Radar (GPR) or Impulse Radar
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