
         
      

 

  
    

   
       

       
    

        
 

       

         
     

     

       
     

      
     

RAILROAD MOUNTAIN, CHAVES COUNTY, NEW MEXICO: A GEOCHEMICALLY 
UNIFORM SINGLE-PHASE MAFIC DIKE EMPLACED AT THE CRATONIC MARGIN
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BACKGROUND
Railroad Mountain is a single-phase, mafic dike located on the Mescalaro
Pediment of the Pecos Slope. The dike was first mentioned by Fisher (1906) and
Semmes (1920). Allen and Foord (1991) and Bartsch-Winkler (1992) provided
additional details. The dike forms a resistant ridge ∼50 km long, 30-45 m wide
and up to 25 m high. It is partially covered by the Mescalaro sands (Quaternary)
along most of its length and in local contact with the Upper Chinle Group, the
Santa Rosa Sandstone and the Artesia Group. The eastern end is buried under
the Mescalaro sands, the western end is buried under river deposits east of the
Pecos River. The trend of the dike changes from ENE to WSW and is in line with
Capitan Mountain located to the west. Contact metamorphic effects are minimal.
A single K-Ar date of 27.9 ±1.4 Ma is reported in Aldrich et al. (1986).
Railroad Mountain represents the eastern-most intrusion in the Lincoln County
Porphyry Belt (LCPB). Tertiary igneous rocks of the LCPB are part of the post-
Laramide Rocky Mountain alkalic province that extends along the eastern front of
the Rockies. Igneous activity occurred along the boundary between the stable
craton to the east and rocks deformed during the Laramide orogeny to the west.
In the region of the LCPB, the stable craton is manifested by the relatively
undeformed Paleozoic and Mesozoic Pecos slope (Allen and McLemore, 1991).
Dikes in the region lie along the WNW- trending Capitan lineament and reflect the
orientation of the least principal horizontal stress in the Southern Great Plains
(Aldrich et al., 1986). The Capitan lineament is considered a leaky transverse
fracture of the Rio Grande rift.

The rocks display three fundamental textures in thin section: (I) diabasic from the
upper middle of the dike, dominated by subhedral plagioclase laths and scattered
larger anhedral plagioclase; (II) finer-grained diabasic/trachytic texture from the
core of the dike; (III) finer-grained diabasic/trachytic near the margins of the dike
(chill zone) with fine-grained plagioclase laths and an aphanitic matrix of anhedral
augite, olivine and magnetite-ilmenite. Type I and II samples are consistent with
approximately 60% plagioclase, 20% augite, 10% olivine and 10% opaques
(magnetite-ilmenite) along with minor apatite.
Plagioclase (∼An50) is generally unaltered except for minor argillic alteration.
Titanaugite is anhedral to subhedral; rare grains are subophitic. Probe data on
five grains yielded an average composition of Wo43.1En38.4Fs16.7Ac1.7 and 1.34-
2.16 wt.% TiO2. Olivine (Fo48.1Fa50.8Tp1.2) is typically anhedral, smaller than
augite and generally unaltered. Subhedral magnetite-ilmenite is relatively
abundant (∼10%). Probe data yielded a temperature of 829-946°C and log10 fO2
= -16 to -13 for magnetite-ilmenite pairs.
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Samples were collected along ∼14.5 km strike length of the dike and from two
quarry pits within the dike. Forty samples were analyzed by XRF and ICP-MS at
Washington State University. Three samples collected at the contact in the quarry
pits had lower oxide totals (92.30-95.58 wt%) due to reaction with the country
rocks. Normalized major oxide concentrations are remarkably consistent with the
maximum variation less than 0.5 wt.%. Mg#s average 41.8 ±0.43 and are plotted
against selected oxides below. The rocks have an alkali-lime index of 47-48
(alkali) and belong to the sodic alkali olivine basalt series of Irvine and Baragar
(1971). On the TAS diagram of Le Bas et al. (1986) the rocks plot in the
trachybasalt field. Ne is present in the norm.
Low Mg#s and very low Cr concentration (mean = 13.1 ppm) suggest significant
differentiation. Because Ni is strongly fractionated by olivine and Cr is strongly
fractionated by pyroxene, olivine fractionation is suggested by Ni/Cr = 1.93.
The chondrite normalized REE pattern shows moderate LREE enrichment
(La/Yb)N = 12.7-13.3, minimal HREE enrichment (Tb/Yb)N = 2.4-2.5 and
negligible Eu anomalies Eu/Eu* = 0.94-0.98. The (La/Yb)N ratios suggest garnet
was not important in the source region. The positive correlation of REEs with
P2O5 and normative apatite suggest apatite played a major role in controlling
REE concentrations.
The primitive mantle-normalized spidergram is slightly concave with moderately
to highly incompatible trace elements enriched relative to primitive mantle.
Barium shows the greatest enrichment and may reflect metasomatism of the
source region. Zr depletion may be a reflection of the source region.

All of the samples plot in the “within plate” field of the tectonic discrimination
diagram of Pearce and Norry (1979). This is consistent with the fact that the
volcanic arc present during the Laramide was located to the west and these rocks
were emplaced to the east, at the far western edge of the craton.
Crystallization likely occurred in the subcontinental lithospheric mantle at depths
of greater than 30 km (Bender et al., 1978). The crust is ∼45-50 km deep in the
Great Plains on either side of the Rio Grande rift. Moderate LREE enrichment and
lack of HREE enrichment is incompatible with presence of garnet in source region
suggesting the maximum depth of crystallization was ≤ 80 km (Wyllie, 1981;
Takahashi et al., 1993; Hirschmann and Stolper, 1996).
Allen and Foord (1991) reported a 87Sr/86Srinitial value of 0.70411 and Nd (CHURT)
value of +0.5 suggesting a primitive mantle melt which had experienced some
enrichment. This is supported by the LREE values and positive Ba anomaly.
Metasomatism and LREE enrichment may be the result of fluxing of the overlying
mantle caused by dewatering of the Farallon plate.
As the Laramide orogeny came to a close, slab rollback led to foundering of the
Farallon plate and eventually tearing of the plate beneath the North American
craton. By about 30-25 Ma the plate was detached beneath central New Mexico
resulting in the exposure of the continental lithosphere to hot asthenospheric
mantle, producing igneous activity in the LCPB. Apatite AHe data (Ricketts et al.,
2016) and fission-track data (Kelley and Chapin, 1997) for the Sierra Blanca
complex in the LCPB indicate rapid cooling due to extension from 25-10 Ma in the
southern portion of the Rio Grande rift, supporting the idea that intrusion occurred
during the transition from Laramide compression to Rio Grande extension.
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