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Throughout the Quaternary, numerous high frequency, high amplitude glacioeustatic sea level cycles have left behind a L : : :
complex network of paleochannels and paleovalleys across the inner continental shelf off the coast of South Carolina. These isolated 5 SC- BOEM 201 5—VC1 9 SC- BOEM201 5 VC21 SC—BOE201 5—C2O 1) Paleochannel fill is predominantly mud rich and
paleotopographic lows were carved into a substrate of pre-Quaternary rocks and Pleistocene deposits by coastal plain and " HE E " I heterolithic, containing sedimentological and paleontological
Piedmont-draining rivers and provided rare accommodation in an overall low-accommodation setting. The distribution, age, ’TOg indicators of having been deposited in low-energy,
composition, and stratigraphic architecture of these sedimentary successions offer insight into both the allogenic and autogenic g tidally-influenced, brackish water settings.
forces that influenced depositional processes at the time of formation. -1 2 g

As part of a 2015 regional sand resource assessment, a dense grid of high resolution subbottom (Chirp) data was acquired off the z =

{

coast of Folly Beach, South Carolina by the Bureau of Ocean Energy Management (BOEM). These data provide the spatial resolution AL S MO RS IR R SCEE RS

required to reconstruct paleochannel connectivity and define the internal stratigraphic architecture of paleochannel and
paleovalley successions. Paleochannel fills display concentric, asymmetrical, or horizontal geometries reflecting varying degrees of
erosion, aggradation, and accretion. Paleovalleys exhibit vertical relief of up to 10 meters and apparent widths of up to 3 kilometers.
Within paleovalleys, individual channels are arranged in both multistory and multilateral configurations that are the result of

(l':

infilled during the mid-Holocene (~4 - 8 ka) following the
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stabaliziation of sea level.
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3) Mud-rich paleochannel fills are a significnat component of the

changes in localized autogenic processes as well as regional allogenic controls that influenced accommodation. NE :
g u g . P g | g . . Ny o local geologic framework and are commonly exposed on the
In addition to geophysical data, 52 meters of sediment core recovered from 9 locations provide the control necessary to 10 e : :
" . ) , : : . _ . : . e’ modern seafloor, potentially influencing local morphodynamics and
reconstruct depositional processes associated with this architecture. Detailed physical descriptions including sediment ey 5 : _
i : : : : .14 S : : Z serve as a source of fine-grained sediment.
composition, lithology, and physical structures; geochemical analysis; *C dating; and AAR age estimates of cored intervals reveal ‘ 52
channel fill that was deposited during the mid-Holocene and was dominated by tidally-influenced processes in low to mixed energy, = i,
~

estuarine and backbarrier settings. 4) The most common types of paleochannel fill in this area are

concentric or horizontal, which, along with observations from

sediment cores, suggests systems dominated by suspension
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gently dipping reflectors surface. Base is unresolvable lithology.

(Paleocene or Miocene in this area as defined by Weems et al. ,2014
and Harris et al., 2005).

Table 1. Stratigraphic architecture of paleochannels and shelf deposits based on seismic and core data. Interpretations based on observation as well as concepts from
Mitchum et al. (1977) and Gibling (2006).
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Figure 1. A) Basic stratal geometries as summarized in Mellet et al. (2013) from concepts defined by Mitchum et al. (1977) which form the basis for the seismo-stratigraphic

facies used in this study. B) Paleochannel and paleovalley architecture from Gibling (2006). C) Conceptual model of tide-dominated estuarine fill within an incised valley AAR Age Estimate Ealry_f[‘_"ple{ Roman(? Ch_Oi'thgOZ M:rph‘l’logif and ':Cie; trenf[j_s tfhrough thkef : ﬂu"ial‘?f””j
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L ——— data used in this study, general Figure 3. A) and B) High-resolution seismic and intepretive geoseismic lines from the BOEM Folly-Kiawah data set. Locations shown in Figure 2. environmental conditions during deposition. Cores within paleochannels and paleovalleys are overwhelmingly mud-rich and exhibit a range of from various contributors involved in the ongoing southeast regional Bureau of
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P ‘ limited bioturbation (Dalrymple and Choi, 2007; Desjardins et al., 2012; Feldman and Demko, 2013; ) as well as shells of intertidal species including (ASAP).
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