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Modern fluvial valleys, paleovalleys and paleochannels, regional
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Piedmont-draining Santee River of South Carolina forms the only river-fed
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of mapped onshore stratigraphy and geometric relationships with onshore
geomorphic features, the more southerly paleo-Santee valley was active as
recently as the mid-Pleistocene. The avulsion from this older valley may be
attributable to the creation of fault-related accommodation. Offshore, a
complex network of paleochannels can be projected onshore where they . o
align with these ancient river valleys. , AN / ‘ " y # P )

In addition to the readily identifiable fluvial paleoincisions, the I/ A — < > perple Bunfered THEP
pre-Quaternary sedimentary units of the inner continental shelf are covered /\ S A S ) % | EemECE S s
by a patchwork of Pleistocene and Holocene marine and paralic deposits. : ' ' = N/ Ea't‘:“h‘l’""e'—c°“"°'—P°i"ts
Many of these units appear massive, lacking internal stratal geometries that e: ‘T::
would yield clues as to their origin. However, evidence of several regression
phases are evidenced by distinct stratigraphic units containing internal
geometries that indicate significant progradation. The oldest of these
progradational units are of Pleistocene age, extend from the nearshore to
the outer shelf, and exhibit internal geometries and stacking patterns
consistent with deposition within a deltaic shoreface. The younger
progradational units are of Holocene age, coincident with the seafloor, and
have internal and external geometries similar to sand ridges documented
elsewhere on the US Atlantic inner shelf.

Figure 6. Conceptual depiction of the regional stratigraphic framework summarizing observations and interpretations from inshore,

Figure 3. (a) Cross section generated from borehole descriptions from locations near the avulsion point onshore, and offshore data sets.

e T e —————— . B of the Santee River paleovalley and the active Santee River valley. (b) Sea level curve showing disagree-
Ladson Formation (240-750 ka)  Ten Mile Hill Formation (200-240 ka) 1

ment between South Carolina highstand deposits and global sea level (modified from Doar, 2014).
R Arrows indicate potential intervals of activity for both the modern and ancient Santee River valleys.

Coastal plain and offshore stratigraphy is dominated by four prominant features: 1) progradational bodies (PG), 2) structureless
tabular to undulatory sand bodies (ID), paleoincisions (CH), and regionally extensive erosional surfaces (6™ order bounding surfaces).
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1. Two distinct types of progradational bodies have been defined here.
a) PGr units

-Form extensive, cuspate shoal complexes with a pronounced ridge and swale morphology along the inner shelf offshore the Santee
River and Cape Romain.
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-1“C dates from several cores indicate that these units are of late Holocene age.
i s et it . N -These have previously been interpreted as shoreline retreat features, but share certain morphological and architectural similarities to
shelf sand ridges documented at numerous locals along the inner to middle continental shelf.

b) PGp units

- These units are largely limited to the subsurface and are distributed across the continental shelf.

- The high degree of variability in foreset geometry suggests spatial or temporal variability in sediment supply, while associated small
paleochannels are the products of abandonded distributary networks.

- These units preserve evidence of a regressive phase of the Santee Delta likely associated with the onset of a glacioeustatic fall during
the late Pleistocene.

2. Structureless sand bodies occur in various stratigraphic positions (ID units).
a) Where they are coincident with the seafloor, they exhibit a highly variable morphology and may represent shoreface

\ \ ' o sands reworked during the Holocene transgression.
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estuarine deposits. PQ at this location is an indurated, fine-grained, calcareous sand and likely (Eocene ?). Basal unit has a structural dip to the SSE which is common in this area. -




