REFINING PREDICTIVE MODELS FOR PASSIVE MARGIN STRATIGRAPHY BY INVERTING THE SEDIMENTARY RECORD
We present a new marine sedimentation model that incorporates two simple modifications allowing non-local sediment transport: 1) the possibility of sediment bypass on steep slopes, and 2) long-distance transport, even over near-zero slopes. We constrain, using Bayesian inference techniques, the four model parameters by comparing modeled against observed stratigraphy from 130 Ma of passive margin evolution in the Orange Basin, southern Africa. Best-fit modeled stratigraphy captures the form of the observed record. Best-fit parameter values imply important roles for both model elements we introduced: sediment bypass on steep slopes and long-distance transport over very gentle slopes. We attribute remaining model-data misfit to additional transport processes—hemipelagic sedimentation, grain size variations, or ocean bottom currents—that are not captured by our simple model but might be required to explain sediment runout distances longer than those produced by our best-fit model. Results suggest that predictive modeling of marine sedimentation requires departing from local diffusion approximations, even over ocean-basin-filling timescales. Simple treatment of nonlocal transport dynamics can improve S2S model predictive power, and may enable better recovery of environmental signals from the long-term stratigraphic record.