FIELD AND COSMOGENIC NUCLIDE STUDIES OF POSSIBLE LAST GLACIAL MAXIMUM GELIFLUCTION BENCHES IN NORTHEASTERN PENNSYLVANIA
Strata within multiple benches constrain mechanisms of colluvium formation and deposition. Outcrops of fractured bedrock, possibly from high frost-cracking intensities during times of continuous permafrost, consist largely of loose, angular boulders (clast-supported) with overall fabric similar to original bedding. Within sediment lobes and benches, all exposures show slope-parallel m-scale beds of matrix-supported bouldery sediment. In situ cosmogenic 10Be concentrations in sand and clasts from one bench constrain near surface residence time of the material. Below 4 m, 10Be concentrations for clasts and matrix are similar (35,000 to 50,000 atoms/g) and 3 to 9X lower than samples above. Shallower than 4 m, in two colluvial beds, nuclide concentrations are similar for clasts and matrix (130,000 to 300,000 atoms/g). Field observations and preliminary analysis of nuclide concentrations are consistent with near-surface exposure during only the last glacial cycle and the relatively rapid erosion and deposition of colluvium via gelifluction during cold-climate conditions. Little reworking of this sediment has occurred since deposition, with exception of some near-surface winnowing of fines. Openwork boulder fields at the surface belie the underlying matrix-supported sediment and its gelifluction origin.