ECOLOGICAL FILTERING AND EXAPTATION IN THE EVOLUTION OF MARINE SNAKES

CONVERGENT EVOLUTION IS COMMON

Kelley and Pyenson 2015, Science

BUT NOT ALWAYS DUE TO ADAPTATION

EXAPTATION

National Geographic

BUT NOT ALWAYS DUE TO ADAPTATION

EXAPTATION

National Geographic

Clemente 2014, Evolution

BUT NOT ALWAYS DUE TO ADAPTATION

EXAPTATION

National Geographic

BUT NOT ALWAYS DUE TO ADAPTATION

ECOLOGICAL FILTERING

AMNH

Increasing aridity and spread of grasslands in North America

Modified from MacFadden 2005, Science

FILTERING

AMNH

BUT NOT ALWAYS DUE TO ADAPTATION

NONAPTATION

BUT NOT ALWAYS DUE TO ADAPTATION

Wiens and Hoverman 2008, Evolution and Development

HOW TO DISCRIMINATE IN DEEP TIME?

HOW TO DISCRIMINATE IN DEEP TIME?

Modified from Gearty, Carrillo, and Payne 2021, The American Naturalist

EVOLUTION OF MARINE SNAKES

Semiaquatic

Biome

Forest

Grassland

Desert

15

Montane

38

Marine

0

17

Brackish

Freshwater

OTHER DATA

CrossMark

Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status

João Filipe Riva Tonini ^{a,*}, Karen H. Beard ^b, Rodrigo Barbosa Ferreira ^{b,c}, Walter Jetz ^d, R. Alexander Pyron ^a

^a Department of Biological Sciences, The George Washington University, 2029 G St NW, Washington, DC 20052, USA

^b Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322-5230, USA

^c Laboratório de Ecologia de Populações e Conservação, Universidade Vila Velha, Rua Comissário José Dantas de Melo 21, Boa Vista, Vila Velha, ES 29102-920, Brazil

^d Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2016) 25, 187-197

Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara

Anat Feldman¹, Niv Sabath², R. Alexander Pyron³, Itay Mayrose² and Shai Meiri^{1*}

	ECOLOGY LETTERS	doi: 10.1111/olo.12169
LETTER	Early origin of viviparity and multiple reversion	s to oviparity in
	courses contiles	

Abstract

R. Alexander Pyron¹* and Frank T. Burbrink^{2,3}

Viviparity has putatively evolved 115 times in squamates (lizards and snakes), out of only \sim 140 origins in vertebrates, and is apparently related to colder climates and other factors such as body size. Viviparity apparently evolves from oviparity via eee-retention, and such taxa may thus still

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2015) 24, 1433–1442

The geography of snake reproductive mode: a global analysis of the evolution of snake viviparity

Anat Feldman^{1*}, Aaron M. Bauer², Fernando Castro-Herrera³, Laurent Chirio⁴, Indraneil Das³, Tiffany M. Doan⁶, Erez Maza¹, Danny Meirte⁷, Cristiano de Campos Nogueira⁸, Zoltán Tamás Nagy⁹, Omar Torres-Carvajal¹⁰, Peter Uetz¹¹ and Shai Meiri¹ Phylogeny (timescaled with fossil calibrations)

Body mass

Reproductive mode (eggs vs. live birth)

- Average temperature
- Average elevation

ESTIMATE ANCESTRAL BIOMES AND TRAITS

revbayes.github.io

ESTIMATE ANCESTRAL BIOMES

JOINTLY ESTIMATE OTHER TRAITS AND ENVIRONMENTAL VARIABLES

threshml

- Jointly estimates discrete and continuous characters
- Threshold model for discrete characters
- Infers (and accounts for) covariances of characters

Felsenstein 2005, Proceedings B

VOL. 179, NO. 2 THE AMERICAN NATURALIST FEBRUARY 2012

A Comparative Method for Both Discrete and Continuous Characters Using the Threshold Model

Joseph Felsenstein*

JOINTLY ESTIMATE OTHER TRAITS AND ENVIRONMENTAL VARIABLES

(F) File snakes
(W) Water snakes
(S) Sea snakes
(K) Sea kraits

Gearty, Carrillo, and Payne 2021, The American Naturalist

TRAIT EVOLUTION ACROSS MARINE INVASIONS

TRAIT EVOLUTION ACROSS MARINE INVASIONS

ELEVATION

TEMPERATURE

PREVIOUS AQUATIC HABITATS

BODY MASS

VIVIPARITY

TAKEAWAYS

- **Viviparity** may be the most important "preadaptation" to invading the marine realm for snakes
 - Strong ecological filtering in all but one invasion lineage
 - Previously evolved as an adaptation for climate control during development
 - **Exapted** for **preventing suffocation** during development
- Marine invasions originated from many different habitats
- Former habitat did not need to be aquatic
- Former habitat must have been in tropical regions at low elevation
 - This reduces the need for larger body sizes (although there is still some minor ecological filtering)

ACKNOWLEDGMENTS

Elsie Carrillo Christianne Orsmby Jonathan Payne Payne Paleobiology Lab Lyons Paleoecology Lab Wagner Paleobiology Lab

Stanford SCHOOL OF EARTH, ENERGY & ENVIRONMENTAL SCIENCES

OTHER BIOMES

