

ESR Dating In The Balanica Cave Complex, Serbia: Tracking Hominins and Paleolithic Cultures in The Middle Pleistocene

BLACKWELL, Bonnie¹, CHEN, Alvin², CHEN, Olivia R.L^{.2,} D'COSTA, Katelyn A^{.2,} FAIJA, Mehrin U.², MIHAILOVIĆ, Dušan³, PLAVŠIĆ, Senka³, ROKSANDIC, Mirjana⁴, DIMITRIJEVIĆ, Vesna³, D'COSTA, Jonathan N.², DAKOVIC, Gligor², SINGH, Impreet K.C.², LI, Raymond², ASHKENAS, Samuel G.², YOON, Dylan Y.² and TAN, Rebecca S.²

RFK Science Resesarch Institute Glenwood Landing, NY, 11547-0866, USA

Department of Chemistry, Williams College,

Dept. of Anthropology, University of Winnipeg, Ninnipeg, MB, R3B 2E9, Canada

Conclusions

Secondary U remobilization occurred in at least one teeth Affects the ages of the teeth

Sediment Samples were measured by NAA

The concentrations of U suggest there were multiple eboulis in the sediment, affecting the ages of the teeth

Overlooking the Sićevo Gorge, the Balanica cave complex lies ~ 15 km east of Table 2. Se Niš, Serbia at ~ 335 m amsl. Both Mala Balanica (MB) and Velika Balanica (VB) Sample yielded Middle Pleistocene mammal fossils, Middle and Lower Paleolithic 2018BAL206 artefacts. VB served as a permanent habitation, especially in Layers 2-3, where 2018BAL207 lithic artefacts, hearths, and charcoal particles have occurred, but MB likely hosted visits from smaller groups. MB's Layer 3b yielded a Homo heidelburgensis mandible. Both caves have matrix- supported conglomerates, where sandy, clayey ^{2018BAL210} silts with éboulis up to 1.5-2.0 m3 in some layers. In VB, reddish silty clay and 2018BAL211 éboulis in Layers 2a-2c overlie the brown, clayey silts and silty sands forming 2018BAL213 Layers 3a-3c, that include hearths. In VB, Layer 4c's several four collapsed 2018BAL215 stalagmitic flowstone floor reflect subsidence before MIS 11, while éboulis that show diagenetic alteration, weathering, root-etching, and post-dispositional ^{2018BAL216} carbonate rims, and lens with secondary carbonate cements that solidify them. 2018BAL21 Most of VB's layers sitting stratigraphically above the MB's deposits. Two from 2018BAL218

Table 2. Sedim	entary R	adioac	tivity, Ba	alanica, S	Serbia.								
			Location	n			Co	ncentrat	ion	Se	edimentary	/ Dose Rat	es
Sample	Sq.	Unit	N–S	E-W	Depth		U	Th	Κ	$D_{{\scriptscriptstyle{\mathrm{sed}}}{\scriptscriptstyle{\mathrm{\beta}}}}\left(t ight)$	$D_{\scriptscriptstyle{ ext{sed}}, ext{y}}(t)$	$D_{\scriptscriptstyle{ ext{sed}},\scriptscriptstyle{eta}}\left(t ight)$	$D_{\scriptscriptstyle{ ext{sed}}, au}(t)$
			X (cm)	Y (cm)	Z(cm)		(ppm)	(ppm)	(wt%)	(mGy/y)	(mGy/y)	(mGy/y)	(mGy/y)
2018BAL206	N27d						1.62	3.49	0.54	129	441	112	387
						±	0.02	0.09	0.02	13	28	11	28
2018BAL207	N27d						1.77	4.14	0.58	141	495	122	434
						±	0.02	0.10	0.02	14	32	13	31
2018BAL209	N27d						3.88	9.49	1.46	336	1145	291	1004
						±	0.02	0.18	0.04	35	72	30	70
2018BAL210	N27d						2 70	7 99	1 31	278	924	241	810
	1127 a					+	0.02	0.16	0.04	29	.58	25	87
2018841 211	N27d					_	3 75	672	1 23	290	954	251	837
2010DAL211	N27U					+	0.02	0.72 0.14	0.03	270	10	18	7
0010D AT 010	NOTA					÷	0.02	0.14	1.61	21	1170	215	1026
2010DAL213	1NZ/U					J.	4.43	0.14	1.01	304 27	170	213	1020
	1 2 4 1					Ξ	0.02	0.10	0.04	27	12	23	11
2018BAL215	LZ4D						0.76	2.42	0.36	18	266	68	233
						±	0.02	0.07	0.01	6	4	0	4
2018BAL216	L24b						1.01	2.89	0.37	88	315	76	276
						±	0.02	0.08	0.01	1	3	6	3
2018BAL217	L24b						1.71	1.91	0.29	92	324	80	284
						±	0.02	0.05	0.01	7	3	6	3
2018BAL218	L24b						1.56	3.53	0.57	131	444	114	389
						±	0.02	0.09	0.02	10	6	8	6
2018BAL219	N27d						2.71	6.03	0.89	215	744	186	653
						±	0.02	0.12	0.02	16	8	13	5
2018BAL220	N26c						2.65	2.93	0.59	161	530	139	465
						±	0.02	0.08	0.02	16	34	14	32
2018BAL221	N26c						3.97	9.99	1.51	347	1188	301	1042
						±	0.02	0.18	0.04	35	75	31	73
2018BAL222	N26c						4.38	5.05	0.90	256	870	223	763
						±	0.02	0.12	0.02	24	55	24	53
2018BAL224	N26c						4.28	3.28	0.58	204	709	177	622
						±	0.02	0.09	0.02	19	45	18	43
2018BAL225	N26c						2.53	4.14	0.69	176	596	152	522
						±	0.02	0.09	0.02	18	37	15	36
2018BAL226	N26c						2.70	8.67	1.18	264	928	229	813
						±	0.02	0.16	0.03	27	59	24	57
2018BAL227	N26c						4.22	8.36	1.20	306	1071	265	939
						±	0.02	0.16	0.03	31	67	27	65
2018BAL228	N27d						3.20	6.99	1.00	247	862	214	756
	u					±	0.02	0.14	0.03	25	55	22	52
2018BAL229	N27a						0.56	1.27	0.20	47	157	40	138
						±	0.02	0.04	0.01	6	10	4	10
2018BAL331	[22c						1.63	1.85	0.23	82	300	71	263
	,					±	0.02	0.06	0.01	9	19	7	18
2018BAL 232B	N26d						2 78	2.89	0.55	159	533	138	467
	1120u					+	0.02	0.09	0.02	16	34	14	33
2018BAT 233	N264					<u> </u>	2.31	2.16	0.02	125	422	108	370
2010DAL233	1120U						2.51	2.10	0.1	125	722	100	370
00100 + 1 00 4						±	0.02	0.07	0.01	13	26		26
2018BAL234	N26d						2.74	2.78	0.53	154	520	134	456
						±	0.02	0.08	0.01	15	33	14	32

Layers 2c-3a in MB and 21 teeth from Layers 2a-4c4 in VB have been by ESR 2018BAL219 standard and isochron analyses. After > 80 associated sediment samples were 2018BAL220 measured by NAA, the time- and volumetrically veraged sediment dose rates in 2018BAL221 the caves were calculated using a 3D multi-component model using éboulis and 2018BAL222 cobble sizes and positions as mapped around each tooth from the total station, photographic, and excavation data. U concentrations in the enamel ranged from ^{2018BAL224} 1.0 to 9.1 ppm, while dentines ranged from 38 to 95 ppm, making it essential to 2018BAL225 understand the U uptake rates by doing isochron and coupled ESR430Th/234U 2018BAL226 analyses to improve the ages' accuracy. Isochron analyses suggest that 2018BAL227 secondary U remobilization has occurred in at least one teeth. Ages for both caves 2018BAL228 show the Balanica caves complex continued to receive sediment for > 400 ky from 2018BAL229 the early Middle to later Pleistocene.

ESR Dating in Caves

Finding $D_{ext}(t)$, the sedimentary dose rate. From U, Th, and K in sedimentary minerals comes β and γ particles which produce the sedimentary dose rate, $D_{sed}(t)$. In sediment, γ rays penetrate ~ 30 cm, and β about 3 mm. Thus, all sedimentary components in all beds up to 30 cm from the fossil are analyzed by NAA to find their $D_{sed}(t)$ and volumetrically averaged over the 30 cm around the tooth.

~ 20 km SW of Niš

in southern Serbia

now 2-4°C in winter

overlooks the Sićevo Gorge & Nišava R.

The Problem with Reworking.

Reworking occurs when erosion or an animal moves a tooth from its original deposition location. If reworking occurs, more than one tooth from each layer should be dated to confirm ages. In Pesturina, the fauna suggest that rodents exists in the cave and can possibly cause a problem for dating each layer.

Table 2. Sedimentary Radioactivity, Balanica, Serbia.

			Locatio	n		-	Co	ncentrat	tion	Se	edimentary	Dose Rat	tes
Sample	Sq.	Unit	N-S	E-W V (cm)	Depth $Z(cm)$		U (nnm)	Th (nnm)	K	$D_{\text{sed},\beta}(t)$	$D_{\text{sed},\gamma}(t)$	$D_{\text{sed},\beta}(t)$	$D_{\text{sed},y}(t)$
2018BAL235	N26d		75	45	<u>2 (cm)</u> 134	*	<u>(ppiii)</u> 4.01	<u>(ppin)</u> 4.00	0.81	230	765	200	<u>(IIICly/y)</u> 670
						±	0.02	0.10	0.02	23	48	20	46
2018BAL236B	N26a		46	45	86		5.02	3.22	0.75	246	818	213	717
						±	0.02	0.08	0.02	24	51	21	49
2018BAL237	N26d		25	45	86	+	2.78	3.54	0.76	189 19	608 38	164 17	533 36
2018BAL238	N26d		25	45	88	<u> </u>	6.71	3.96	0.02	301	1034	261	907
	1.200					\pm	0.02	0.09	0.02	29	64	26	63
2018BAL239	J23a		0	65	237		3.56	8.12	1.39	312	1034	270	907
	100		0	25	267	±	0.02	0.16	0.04	32	65 1082	23	64
2018BAL240	J23a		0	35	267	±	2.63	9.75 0.18	1.70	334 33	1082 65	290 31	949 67
2018BAL242	J23b		20	95	267		2.16	7.54	1.05	228	793	198	695
						±	0.02	0.15	0.03	24	50	21	49
2018BAL243B	N26d		20	25	86		2.77	2.86	0.51	153	522	133	458
2018BAI 244	N26d		75	0	78	±	0.02 3.90	0.08 A 7A	0.01	10 237	3 700	9 206	4 700
2010DAL244	1 1 200		15	0	70	±	0.02	0.11	0.00	17	7	15	700
2018BAL245	N26d		75	25	76		5.95	3.67	0.83	283	950	246	833
2018BAT 246	N264		100	25	78	±	0.02	0.09	0.02	20	6 426	17	6 373
2018DAL240	1 1 200		100	23	/0	±	0.02	0.07	0.40	9	420	8	4
2018BAL247A	N26d		75	50	78		3.27	8.72	1.52	323	1061	281	930
				50	70	±	0.02	0.16	0.04	24	11	21	9
2018BAL247B	N26d		75	50	/8	+	1.32	1.12	0.22	69 5	233	60 5	204
2018BAL248C	M26d		75	50	75	_	5.15	4.21	0.85	267	898	232	788
			100	25	0.0	±	0.02	0.10	0.02	19	7	16	5
2018BAL249	M26d		100	25	82	+	3.80	5.35	0.85	236 23	814 51	205 15	714
2018BAL250	M26d		100	5	76	÷	4.26	8.25	1.71	372	1180	323	1034
			100	1.0	- <i>c</i>	±	0.02	0.15	0.05	37	74	34	72
2018BAL251	M26d		100	10	76	+	5.93	5.81	1.15	334 34	1116 70	290 30	978 67
2018BAL301	N25b					_	4.53	7.41	1.52	344	1054	299	924
20100 41 210						±	0.02	0.15	0.04	35	67	31	65
2019BAL310	N26a					+	4.55	9.50 0.18	1.69	383 38	1263 80	333	1107 77
2019BAL311	M22c					_	1.93	7.86	1.67	303	917	263	804
						±	0.02	0.16	0.04	36	74	32	72
2019BAL312							4.12	9.21	1.60	359	1186	311	1040
20100 AT 212	Maa					±	0.02	0.1/	0.04	36 410	/4	32 472	12
2019DAL515	IVIZZC					+	0.02	0.24	2.30	410 44	90	472	93
2019BAL314	M22c					-	1.29	6.30	1.03	196	643	170	564
						\pm	0.02	0.13	0.03	20	14	18	40
2019BAL315	M22c						1.67	7.02	1.24	237	760	205	666
						\pm	0.02	0.13	0.03	25	48	22	47
			/•••/ •										
Table 2. Sedir	nentary R	Kadioac [®]	Locatio	alanica,	Serbia.	. <u> </u>	Co	ncentra	tion	S	edimentar	v Dose Ra	tes
Sample	Sq.	Unit	N–S	E-W	Depth	-	U	Th	K	$D_{\mathrm{sed},\beta}\left(t ight)$	$\frac{D_{\text{sed},\gamma}(t)}{D_{\text{sed},\gamma}(t)}$	$\frac{DOBCIRC}{D_{\text{sed},\beta}(t)}$	$\overline{D_{{\scriptscriptstyle{\mathrm{sed}}},{\scriptscriptstyle{y}}}(t)}$
	5071		X (cm)	Y (cm)	Z(cm)		(ppm)	(ppm)	(wt%)	(mGy/y)	(mGy/y)	(mGy/y)	(mGy/y)
2019BAL316A	F27b				120		2.39	7.03	1.39	275	865	239	759 52
2019RAI 316R	F27b				120	±	0.02 2.09	0.14 8 56	0.04 1.73	318	979	20 276	35 858
	1270				120	\pm	0.02	0.16	0.05	32	62	30	60
2019BAL318B	F27b		48	70	132		3.78	5.30	1.33	297	913	258	801
						±	0.02	0.11	0.04	30	57	27	56
2019BAL320	F27b				124		3.77	9.97	1.64	358	1195	311	1048

Balanica, Serbia

Iower layers - finer sediment

now 18-20°C in summer now wet winters & dry summers now surrounded by deciduous forest cave opens to SSW only layers dated until now! 1.5 x 2 m wide entrance 40 m deep ✤ > 8 geological layers - only to Layer 5 ✤ Layer 2: - small-large éboulis - reddish-brown sand, silt & clay - retains water well! Layer 2a - very large éboulis Layer 2b - smaller large éboulis - well rounded & weathered éboulis warm wet period during its deposit ✤ Layer 3: - lighter coloured silty clay

3 geological layers		2019BAL315	M22c
- only to Layer 5			
ver 2: - small-large éboulis		Table 2. Sedin	nentary
- reddish-brown sand, silt & clay			
- retains water well!		Sample	Sq.
ver 2a - very large <i>éboulis</i>		2019BAL316A	F27b
ver 2b - smaller large <i>éboulis</i>			
- well rounded & weathered éboulis		2019BAL316B	F27ł
warm wet period during its deposition		2019BAL318B	F27t
ver 3: - lighter coloured silty clay		20100 41 220	E776
- Homo erectus mandible in 3c		2019DAL520	Γ270
- suggested a drier, but warm period		2019BAL321B	F27b
er layers - finer sediment	Layer 2a		
- very wet period during their deposition		2019BAL322	F27b

373			
4 930			
9			
204			
3			
/88			
714	We thank:		Eupdipa
7	Vie mank.		Funding.
1034	JUIT FIDIEITUIT, KEKSKI	PRIDE D	
978		SSI WEL	SRFK Science Research
67	RFK SRI members 2013-2014	Contraction of the second	Institute
924	Balanica excavation crews,	ALTERA P	S Williams College
65 1107	2012-2014	CONTRACT	S NSF, USA
77	Ms. A. Pedruczny, McMaster U.		6 University of Winnipeg
804	M.A. Shama, MPC SRI	CARDI BI	Belgrade University
72	Ms. N. Jaipershad, MPCSRI		Serbian Government
1040	☑ Dr. D. Marmor, MPCSRI		SSHRC, Canada
12			
93			
564			
40			
666			
47			
	AHERN, J.C.M., F.H. SMITH, 2004. Adolescent archaics	or adult moderns? Le Mous	tier 1 as a model for estimating the age at death of
$\frac{D_{\text{set y}}(t)}{D_{\text{set y}}(t)}$	BALTER, V., L. SIMON, 2006. Diet and behavior of the	Saint-Césare Neanderthal infer	red from biogeo-chemical data inversion. <i>Journal of</i>
(mGy/y)	Human Evolution 51: 329-338	the simulations of Orace an	
759	Isotope Stage 3 in Europe. <i>Quaternary Research</i> 5	8, 296-309.	
53	BLACKWELL, B.A., 1989. Laboratory Procedures for ES	R Dating of Tooth Enamel. M	cMaster University Department of Geology Technical
858	Memo 89.2, 234 pp. BLACKWELL, B.A., 1995. Electron spin resonance dati	ng. In N.W. Rutter NR Ca	atto, eds. Dating Methods for Quaternary Deposits
801	Geological Association of Canada, St. John's. Geote	ext 2 : 209-251.	
56	BLACKWELL, B.A.B., 2001. Electron spin resonance (Environmental Change using Lake Sodiments 1: Page	ESR) dating in lacustrine environment	vironments. In W.M. Last, J.P. Smol, ed. Tracking
1048	BLACKWELL, B.A.B., 2006. Electron spin resonance (ESR) dating in karst environments.	Acta carsologica 35: 123-147.
74	BLACKWELL, B.A.B., R.A. LONG, M.R. SÉRONIE-VIVIEN, A	A.C. MONTOYA, A.R. SKINNER	J.I.B. BLICKSTEIN, A.M. TILLIER, 2007. ESR dating at
508	incisor. <i>Geologicial Society of America Annual Meet</i>	e Middle Pleistocene bone-bear ting Program with Abstracts 39	: Abstract 205-2.
35	BLACKWELL, B.A.B., J.I.B. BLICKSTEIN, 2000. Conside	ering sedimentary U uptake	in external dose rates determinations for ESR and
898 63	Iuminescent dating. <i>Quaternary International</i> 68-71: BLACKWELL BAB A R SKINNER P REASSARD LLB	: 329-343. BLICKSTEIN: 2002 – U. Untake -	in tooth enamel: Lessons from isochron analyses and
015	laboratory simulation experiments. In N.E. Whitehe	ad. M. Ikeva, eds., <i>Proceeding</i>	s of the International Symposium on New Prospects in

total station data

To check the U uptake parameter

 \diamond do coupled ESR-²³⁰Th/²³⁴U ages

	2019BAL323 F27b	114 2.13 8.30 2.07 362 1044 314 915	laboratory simulation experiments. In N.E. Whitehead, M. Ikeya, eds., Proceedings of the International Symposium on New Prospects in
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ESR Dosimetry and Dating. Society of ESR Applied Metrology, Osaka, Advances in ESR Applications 18: 97-118.
A sector of the sector of	2010BAL 324 F20b	253 844 200 364 1076 316 043	LACKWELL, B.A.B., M.R. SERONIE-VIVIEN, I.J. AHMED, C.X.Y. ZHOU, R.A. LONG, R.K. MANGAL, P.C. BAIN, 'A.R. SKINNER, 2010. ESR dating
V d'archaeological dinto	2019BAL324 F290	2.53 6.44 2.00 304 1070 310 943	at Pradayrol, Lot, France: Dating a Middle Pleistocene hominid incisor, Middle Paleolithic artefacts, and associated fauna. <i>EPR-Biodose</i>
- Middle Paleolithic		± 0.02 0.10 0.03 37 08 33 00	2010, Cannes, France.
lithic artefacts	2019BAL325 F29b	2.08 5.57 1.21 237 728 206 638	the door occur and outer space. Geological Society of America Program with Abstracts 43 : Abst. 5, 10
		$\pm 0.02 0.12 0.03 24 46 22 45$	IACKWELL RAR ESK VILAR SKINNER I TURK IIR RUCKSTEIN I TURK VSW VIN R I AU 2007 ESR dating at Divie babe I
- charcoal in hearths	2019BAL326 E28b	3.61 7.71 1.34 305 1010 264 885	Slovenija. In I. Turk, ed. Divie habe I: Paleotiscko naidišča mlaišega pleistocena v Sloveniji (Divie Babe I: Upper Pleistocene
🔶 fauna include		$\pm 0.02 0.15 0.04 31 64 27 62$	Palaeolithic Site in Slovenia), vol. 1: Geologija in paleontologija (Geology and Paleontology). Opera Instituti Archaeologici Sloveniae
	2019BAL327 E26a	3.69 7.32 1.37 309 1006 268 882	13 : 151-157.
- Canis (dog or wolf)		$\pm 0.02 0.15 0.04 31 63 28 62$	LACKWELL, B.A.B., M.R. SERONIE-VIVIEN, I.J. AHMED, C.X.Y. ZHOU, R.A. LONG, R.K. MANGAL, P.C. BAIN, [†] A.R. SKINNER, 2010. ESR dating
- Ursus (cave bear)	2019BAL328 E26a	3.13 2.96 0.56 170 574 147 503	at Pradayrol, Lot, France: Dating a Middle Pleistocene hominid incisor, Middle Paleolithic artefacts, and associated fauna. <i>EPR-Biodose</i>
		$\pm 0.02 0.08 0.02 17 36 15 34$	2010, Cannes, France.
- hyena	2019BAL316A F27b	120 2.39 7.03 1.39 275 865 239 759 E	RENNAN, B.J., W.J. RINK, E.L. MCGUIRL, H.P. SCHWARCZ, 1997. β doses in tooth enamel by "one-group" theory and the Rosy ESR dating
- Dama (fallow deer)		$\pm 0.02 0.14 0.04 27 54 26 53$	software. Radiations Measurements 27: 307-314.
	2019BAL316B F27b	120 2.09 8.56 1.73 318 979 276 858	OSTAMAGNO, M., L. MEIGNEN, BEAUVAL, C., VANDERMEERSCH, B., MAUREILLE, B., 2006. Les Pradelles (Marillac-le-Franc, France): A Moustorien reindoor hunting comp? <i>Journal of Anthropological Anchaeology</i> 25 : 466-284
- Cervus elaphus		$\pm 0.02 0.16 0.05 32 62 30 60$	Mousterian remoter numming camp: <i>Journal of Ammropological Archaeology</i> 25, 400-204.
	2019BAL318B F27b	48 70 132 3.78 5.30 1.33 297 913 258 801	new results and new challenges Journal of Human Evolution 44 331-371
		$\pm 0.02 0.11 0.04 30 57 27 56 1$	DENNELL, M.D., PETRAGLIA, 2012. The dispersal of <i>Homo sapiens</i> across southern Asia: How early, how often, how complex? <i>Quaternary</i>
- goats	2019BAL320 F27b	124 3 77 9 97 1 64 358 1195 311 1048	Science Reviews 47: 15-22.
- sheep	2019 BIIL 520 1210	+ 0.02 0.18 0.04 36 75 33 74	RÜN, R., 1989. Electron spin resonance dating. Quaternary International 1: 65-109.
	2019BAL321B F27b	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AU, B., B.A. BLACKWELL, H.P. SCHWARCZ, I. TURK, J.I. BLICKSTEIN, 1997. Dating a flautist? Using ESR (electron spin resonance) in the
- other ungulates root showing corrosion		+ 0.02 + 0.09 + 0.02 + 175 + 175 + 152 + 152 + 155 +	Mousterian cave deposits at Divje Babe I, Slovenia. Geoarchaeology 12: 507-536.
- birds	2010DAL222 E27h		AZUÉN, T., 2012. European Neanderthal stone hunting weapons reveal complex behavior long before the appearance of modern humans.
	2019BAL322 F270		Journal of Archaeological Science 39 : 2304-2311.
		$\pm 0.02 0.17 0.05 36 \qquad 64 \qquad 32 \qquad 63$	sequences <i>Journal of Archaeological Science</i> 40: 2384-2392
	2019BAL323 F27b	114 2.13 8.30 2.07 362 1044 314 915 \mathbf{N}	IIIAILOVIĆ D.D. P.S. MILOŠEVIĆ 2012 Excavations of the Palaeolithic site Pešturina near Niš Journal of Serbian Archaeological Society
		$\pm 0.02 0.16 0.05 37 66 33 64$	28:88-106.
Table 1 Samples in the Study	2019BAL324 F29b	2 53 8 44 2 00 364 1076 316 943 R	AE, T. KOPPE, C.B. STRINGER, 2011. The Neanderthal face is not cold adapted. <i>Journal of Human Evolution</i> 60: 234-239.
			EGUEIRO, M., L. RIVERA, T. DAMNJANOVIĆ, L.LUKOVIĆ, J. MILASIN, R. HERRERA, 2012. High levels of Paleolithic Y-chromosome lineages
Number Location Tooth		± 0.02 0.16 0.05 37 68 53 66	characterize Serbia. Gene 498: 59-67.
ESR Catalogue Laver Square N W 7 Elevation Species Type	2019BAL325 F29b	$2.08 5.57 1.21 237 728 206 638 \qquad \mathbb{R}$	INK, W.J., MERCFIER, N., MILHAILOVIC, D., MORLEY M.W., THOMPSON, J.W., et al., 2013. New Radiometric Ages for BH-1 Hominin from
(om) (om) (om) (om)		$\pm 0.02 0.12 0.03 24 46 22 45$	Balanic(Serbia): Implications for Understanding the Role of the Balkans in Middle Pleistocene Human evolution.
	2019BAL326 E28b	3.61 7.71 1.34 305 1010 264 885	KINNER, A.K., B.A.B. BLACKWELL, D.E. CHASTEEN, J.M. SHAO, S.S. MIN, 2000. Improvements in dating tooth enamel by ESK. Applied Padiation & Isotopes 52: 1227-1244
AT50 2012BAL17 2(a?) L30d 48. 327.550 cervid cheek + bone		+ 0.02 0.15 0.04 31 64 27 62	KUNNER AR BAR BLACKWELL DE CHASTEEN IM SHAO 2001 O band ESR studies of fossil tooth enamel <i>Quaternary Science</i>
AT52 2012BAL19 2(a?) L30c 28. 327.50 cervid cheek + bone	2010DAL227 E26a	260 722 127 200 1006 268 882	Reviews (Quaternary Geochronology) 20: 1027-1030.
AT51 2012BAL18 2b M28b ~ 43 ~ 56 > 60 327.463 cervid cheek + bone	2019BAL327 E20a	5.09 /.52 1.5/ 309 1000 208 882 S	KINNER, A.R., B.A.B. BLACKWELL, R.A. LONG, M.R. SÉRONIE-VIVIEN, A.M. TILLIER, J.I.B. BLICKSTEIN, 2007. New ESR dates for a new
AT53 2012BAL20 2b 126b > 80 327 34 cervid cheek + bone		$\pm 0.02 0.15 0.04 31 63 28 62$	bone-bearing layer at Pradayrol, Lot, France. Paleoanthropology Society Annual Meeting Abstracts, Philadelphia, p. 25.
IT38 2018BAI 214 2212 124b 50 95 60 327.8 lbey Upper molar	2019BAL328 E26a	3.13 2.96 0.56 170 574 147 503 S	ØRENSEN, B., 2010. Demography and the extinction of European Neanderthals. <i>Journal of Anthropol-ogical Archaeology</i> 30 : 17-29.
$\frac{1}{1}$		$\pm 0.02 0.08 0.02 17 36 15 34$	
JI40 ZUTOBALZ30a ZD INZ0a 40 45 80 IDex LOWER INCISOR			

126

0.02

8.89

 $\pm 0.02 \quad 0.17 \quad 0.05 \quad 36$

1.95 344

15

298

32

64