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Background:

. The Neoproterozoic carbon isotope record is characterized by large variations in 63C values
measured from carbonate rocks (6*3C_,.,), ranging from +10%e. to -15%o.! The origin of this
variability cannot be easily explained by the traditional steady state carbon cycle model (Figure
1), which is often used to interpret such records.

Neoproterozoic carbonates are shallow-water carbonates (i.e.., deposited on continental
crust).
Such carbonates often form in marginal marine and mixed carbonate-
siliciclastic systems, where water column DIC values may be more sensitive to
local river input.?
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Figure 1: Traditional carbon mass balance model, with its assumptions and equations (ref. 3)

“Light” 613Cp,¢

Objectives/Hypotheses:

{
/

Klamath River Catchment
Bedrock Geology

S N add e

Objectives:
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Hypotheses: )
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Methods:

. Data mining for papers useful to this study using GeoDeepDive
(https://geodeepdive.org/)

Data compilation of 613C,, and other relevant river chemical data

including DIC, alkalinity, Ca concentrations, and river discharge
rates from 135 papers |
Data analysis using Python | "Il

Bedrock geology maps made using QGIS and Macrostrat® % 18 16 -4 12 -0 -8 -6 -4
513C(DIC)

Full bibliographic metadata for 135 papers is available via GDD

Figure 3: 613C,,. plotted against associated calcium concentrations and DIC concentrations
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Figure 5: 613C, . histogram with statistics, calculations, and annotations to visualize hypotheses in this study
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Figure 4: Examples of three different river catchments with isotopically heavy®’, light®®, and average!®’ §13C, . values (compared to total distribution) and their bedrock geology

Conclusions:

. The weighted mean from this study is lighter than the
assumed riverine 613C input in the classic carbon cycle
model by 4%o
Variability in 613C, . tends to decrease with increasing DIC
concentrations
Ca concentrations do not appear to have any significant
affect on 633C,. values
“Light” 613C, values recorded from the Klamath river
may be linked to siliciclastic/igheous dominated bedrock
lithology upstream of the sampling site
Bedrock lithology does not appear to be the dominant
variable controlling 613C,,c in the Fraser and Lower
Mississippi rivers
Variables affecting 613C. in river water is too complex to
test using only these methods

Future Directions:

Constrain lithology map to a smaller area upstream of the
sampling site(s)

Break down lithology further (shale vs. sandstone)
Describe river catchment bedrock lithology quantitatively
(% Carbonate, % Igneous...)
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