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•  The	Neoproterozoic	carbon	isotope	record	is	characterized	by	large	varia:ons	in	δ13C	values	
measured	from	carbonate	rocks	(δ13Ccarb),	ranging	from	+10‰	to	-15‰.1	The	origin	of	this	
variability	cannot	be	easily	explained	by	the	tradi:onal	steady	state	carbon	cycle	model	(Figure	
1),	which	is	oLen	used	to	interpret	such	records.	

•  Neoproterozoic	carbonates	are	shallow-water	carbonates	(i.e..,	deposited	on	con:nental	
crust).	

•  Such	carbonates	oLen	form	in	marginal	marine	and	mixed	carbonate-
siliciclas:c	systems,	where	water	column	DIC	values	may	be	more	sensi:ve	to	
local	river	input.2	

	

Conclusions:	

•  Objec:ves:	
•  Quan:fy	the	variability	of	modern	δ13CDIC	values	in	

rivers	and	describe	the	dominant	controls	on	the	
observed	variability	

•  Hypotheses:	
•  Where	river	basin	lithology	is	carbonate	dominated	

and	or	where	Ca	concentra:ons	in	river	waters	are	
high,	associated	δ13CDIC	measurements	will	be	heavier	
than	δ13Catmospheric	CO2

4	
•  Where	river	basin	lithology	is	siliciclas:c	dominated,	

associated	δ13CDIC	measurements	will	be	lighter	than	
δ13Catmospheric	CO2

4
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•  Data	mining	for	papers	useful	to	this	study	using	GeoDeepDive	
(htps://geodeepdive.org/)	

•  Data	compila:on	of	δ13CDIC	and	other	relevant	river	chemical	data	
including	DIC,	alkalinity,	Ca	concentra:ons,	and	river	discharge	
rates	from	135	papers	

•  Data	analysis	using	Python	
•  Bedrock	geology	maps	made	using	QGIS	and	Macrostrat5	
•  Full	bibliographic	metadata	for	135	papers	is	available	via	GDD	
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Figure	4:	Examples	of	three	different	river	catchments	with	isotopically	heavy6,7,	light8,9,	and	average10,7	δ13CDIC	values	(compared	to	total	distribu:on)	and	their	bedrock	geology	

n	=	1619	

δ13CDIC	variability	
decreases	with	
increasing	DIC	

Figure	3:	δ13CDIC	ploted	against	associated	calcium	concentra:ons	and	DIC	concentra:ons		

Mean	=	-9.34	
Standard	devia:on	=	4.12	
Mode	=	-10.4 		
Maximum	=	7.01	
Minimum	=	-27.5	
	

Weighted	mean(	a)	-9.34	‰	
δ13CDIC	weighted	by	DIC	concentra:on	

Weighted	mean	(b):	-9.99‰	
δ13CDIC	weighted	by	river	discharge	
flow	rates	and	DIC	concentra:ons	

Siliciclas:c	weathering?	 	 														Carbonate	weathering?	

δ13CCO2(atmosphere)	=	-8‰	

Figure	5:	δ13CDIC	histogram	with	sta:s:cs,	calcula:ons,	and	annota:ons	to	visualize	hypotheses	in	this	study			
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If										=	0	
	System	in	steady	state:		

	Friv	=	Fcarb	+	Forg	
	

δriv	=	(1-forg)δcarb	+	(forg�	δorg)	
	
	

F:	Flux	of	carbon	
forg:	frac:on	of	organic	
carbon	burial	
δ:	δ13C		
riv:	carbon	input	from	
weathering		
carb:	carbonate	
org:	organic	carbon	
(	):	assump:ons	in	
carbon	cycle	model	
	

(δ13Ccarb	=	δ13CDIC)	

(δ13Criv	=	δ13Cmantle	=		-5‰	)	

(ΔB	=	δorg	-	δcarb	=	-25‰)	

(carbon	primarily	delivered	to	oceans	by	rivers)	

δcarb = −5+ 0 ⋅25= −5

δ1
3 C
	

forg

ΔB	

δcarb	

δorg	

Forg
Fcarb +Forg

=
δriv −δcarb

ΔB
= forg

δcarb = δriv − forg ⋅ ΔB
forg

Figure	1:	Tradi:onal	carbon	mass	balance	model,	with	its	assump:ons	and	equa:ons	(ref.	3)		 •  The	weighted	mean	from	this	study	is	lighter	than	the	
assumed	riverine	δ13C	input	in	the	classic	carbon	cycle	
model	by	4‰	

•  Variability	in	δ13CDIC	tends	to	decrease	with	increasing	DIC	
concentra:ons	

•  Ca	concentra:ons	do	not	appear	to	have	any	significant	
affect	on	δ13CDIC	values	

•  “Light”	δ13CDIC	values	recorded	from	the	Klamath	river	
may	be	linked	to	siliciclas:c/igneous	dominated	bedrock	
lithology	upstream	of	the	sampling	site	

•  Bedrock	lithology	does	not	appear	to	be	the	dominant	
variable	controlling	δ13CDIC	in	the	Fraser	and	Lower	
Mississippi	rivers	

•  Variables	affec:ng	δ13CDIC	in	river	water	is	too	complex	to	
test	using	only	these	methods	

Figure	2:	World	map	showing	river	data	collec:on	loca:ons	used	in	this	study		
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n	=	1174	

•  Constrain	lithology	map	to	a	smaller	area	upstream	of	the	
sampling	site(s)	

•  Break	down	lithology	further	(shale	vs.	sandstone)	
•  Describe	river	catchment	bedrock	lithology	quan:ta:vely	

(%	Carbonate,	%	Igneous…)	

Future	Direc:ons:	


