Cosmogenic Modeling ¹⁰Be with UAV terrain analysis to determine Little Ice Age subglacial abrasion:quarrying ratio at Jakobshavn fore-field

Brandon L. Graham¹, Jason P. Briner¹, Nicolas Young², Allie Balter-Kennedy^{2,3}, Joerg Schaefer^{2,3}

¹Department of Geology, University at Buffalo, Buffalo, New York 14260, USA; ²Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA; ³Department of Earth and Environmental Sciences, Columbia University, New York, New York, USA

THE GEOLOGICAL SOCIETY OF AMERICA John T. and Carol G. McGill Research Award

What we're doing

Why we're doing it

- Quantifying sub glacial erosion rate
- How much **erosion** occurs from **abrading** vs **quarrying**
- Taking cosmogenic nuclide exposure to the next level

- Economic use of aggregates
- Bio-available fertilizer
- Improve constraints for process models
- Push the utility of Cosmogenic exposure methods

Glacial Erosion

- The Greenland Ice Sheet exports a significant volume of sediment
- The rate of erosion is poorly constrained worldwide, but constantly being improved.
- Models based on experimental constraints.
- Abrasion vs Quarrying?

Jakobshavn Isbræ

Google Earth: IBCAO, SIO, NOAA, USN, NGA, GEBCO, USGS

USGS Landsat 8 08/22/2018

Jakobshavn Isbræ

Joughin et al.

UAV – Field site imagery

UAV - Analysis

The Field Site – Erosional Features

- How much **abrasion** and **quarrying** occurred during the Little Ice Age?
- Need a way to quantify these parameters?!
- Cosmogenic Nuclide Exposure
 - Used to quantify abrasion depth
 - Can we leverage it to reconstruct a missing block though?

- ¹⁰Be nuclear reaction from high energy neutrons hitting O and Si in quartz
- Does not occur from any other way
- Built up through time due to exposure of cosmic radiation

Concept Model

Sampling location

14

Sampling Location

Sampling Location – Results!!

Cosmogenic Nuclide Modeling - Results

Cosmogenic Nuclide Exposure Modeling

Cosmogenic Nuclide Modeling - Results

Cosmogenic Nuclide Modeling - MCMC

Cosmogenic Nuclide Modeling - Results

Cosmogenic Nuclide Modeling - Results

Results

- Abrasion Depth = 4.1 ± 1.9 cm
 - ~0.2 \pm 0.1 mm/yr abrasion rate
 - Young et al (2016)
 - Balter-Kennedy et al (*in review*)
- Field Area = $18,000 \text{ m}^2$
- Abraded Volume = 650 ± 300 m³
- Plucked Volume = TBD
- Quarried site informs other lee surfaces

Implications

- Constrain erosion process models
 - Ice velocity
 - Rock Hardness
 - Fracture/Joint orientation
 - Abrasion Volume/Rate
 - Quarrying Volume

Thank you!

Englacial tunnel

Boulton and Hindmarsh, 1987

Iverson (2012)

There's More!

Zoet et al. (2013)