Preparing Preservice Teachers to Engage in NGSS Science and Engineering Practices: The Pathways to Science Teaching Program

Heather L. Petcovic, Steven Bertman, Lauri E. Davis, Stephen Kaczmarek, Kevin Koch, Valerie Long, and R. Paul Vellom

This work is supported by the National Science Foundation under Grant No. GEO-1701007. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Why *Pathways to Science Teaching*?

Diverse and well-prepared K-12 teachers are critical to expanding participation in the geoscience workforce.

Pathways is an NSF GeoPATHS project aimed at:
1. Preparing diverse students to become K-12 science teachers
2. Engaging future teachers in authentic research and teaching science to youth
3. Enhancing identity of preservice teachers as both geoscientists and as educators
Next Generation Science Standards emphasize three dimensions of science.

But, engaging in science and engineering practices is often lacking in teacher preparation programs.

Pathways emphasizes:

- Science and Engineering Practices
- Nature of Science
- Identity as geoscientist and teacher
Why *Pathways to Science Teaching*?

A 10 week summer program themed around water quality:

• Week 1: Meet local water quality stakeholders
• Weeks 2-5: Design and conduct water quality research
• Weeks 6-9: Teach youth in summer camps themed around water quality
• Week 10*: Communicate results (*BONUS - present at national conference)
Who were Pathways participants?

Three cohorts, total of 23 participants

- 10 secondary science education, 6 elementary education, 7 science majors
- 16 women, 10 underrepresented in science teaching by gender
- 9 students of color (Black/African American, Asian, Hispanic, 2+ races)
- 2 LGTBQ+, 2 Military veterans, 1 with disability
- Half attended community college, 6 first generation college

Cohort 1: 2018

Cohort 2: 2019

Cohort 3: 2020 2021
How did we measure program success?

Project goal – data measures participants’

<table>
<thead>
<tr>
<th></th>
<th>Data source</th>
<th>When collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding of the nature of science (NOS) and scientific inquiry (NOSI)</td>
<td>SUSSI (Liang et al., 2006; 2008)</td>
<td>First day of program, at transition, last day of program</td>
</tr>
<tr>
<td>Knowledge of and comfort with using NGSS science and engineering practices in the classroom</td>
<td>SIPS (Hayes et al, 2016)</td>
<td>First day of program, at transition, last day of program</td>
</tr>
<tr>
<td>Identity as a scientist and as a teacher</td>
<td>Survey developed by SAMPI</td>
<td>First day of program, at transition, last day of program</td>
</tr>
<tr>
<td>General experiences, most and least impactful parts of the program, suggestions for improvement</td>
<td>Individual participant interview</td>
<td>Last day of program</td>
</tr>
</tbody>
</table>

Evaluation conducted by SAMPI at WMU
How did we impact participants’ SEPs?

Preservice teachers designed their own water quality investigations and had youth design and conduct investigations.
How did we impact participants’ SEPs?

2019 Cohort emphasized recording, gathering, and analyzing data.
How did we impact participants’ SEPs?

All cohorts gained experience in using evidence to support claims; 2018 cohort emphasized argumentation.
How did we impact participants’ SEPs?

All cohorts created and used models; 2018 cohort emphasized models.
How did we impact participants’ SEPs?

“We focused a lot on scales and models so we were able to use water cycle models and other models we had on campus.” -2018

“The practices stress finding solutions for problems and that is a big part of geoscience careers.” -2018

“models ... represent big picture concepts.” -2019

“They [the NGSS] reflect what scientists are actually doing in the field” -2019

“With real life research in my pocket, I feel I can provide students with a more complete experience by modeling conditions that we came across in the field, such as open ended discovery.” -2018
Impact of *Pathways to Science Teaching*

A 10 week summer program themed around water quality:
- Week 1: Meet local water quality stakeholders
- Weeks 2-5: Design and conduct water quality research
- Weeks 6-9: Teach youth in summer camps themed around water quality
- Week 10*: Communicate results (*BONUS - present at national conference)
Want to hear more?