

Faculty of Environmental Sciences, Department of Hydro Sciences, Institute of Groundwater Management

Evaluation of Transfer Function Noise Modelling and Dimensionality Reduction Techniques for Karst Systems

Max G. Rudolph¹, Raoul Collenteur⁵, Markus Giese⁴, Alireza Kavousi¹, Thomas Wöhling², Torsten Noffz⁶, Andreas Hartmann³, Steffen Birk⁵, Thomas Reimann¹

THE

SOCIETY

GEOLOGICAL

OF AMERICA®

UN

Motivation and Aim

Transfer Function Noise (TFN) Modelling

- Modelling and forecasting karst system spring discharge still poses a challenge
- **Distributed modelling** approaches often suffer from **insufficiently available data**
- Lumped parameter models often do not reflect physical system understanding
- → Development of a conceptually and (partially) physically interpretable datadriven model

Dimensionality Reduction (DR)

- Difficulties in **physical model interpretability** pose challenges regarding **model** calibration and verification of parameters
- Active subspaces (AS, linear DR) offer the possibility of studying the model **input-output map** from the parameter space to a scalar model output, revealing important directions in the parameter space to reduce the dimensionality
- → Investigation of **parameter and process relationships** in the AS framework

The suitability of the combined methods of TFN modelling and DR is systematically evaluated w.r.t. the capability of simulating karst system spring discharge and the assessment of **parameter and process relationships**.

Materials and Methods

1: Complete Workflow Applied for Synthetic Sys. & Milandre Karst System

Considered Systems Milandre Karst System, heavily studied, subject to Karst Modelling Challenge (KMC) \rightarrow comparison of TFN model with other approaches Three synthetic systems reacting on different time scales (MODFLOW + CFP + recharge model (RM, Fig. 2))

Setup of the Combined TFN modelling and DR approach

- TFN model tested with different response function and recharge model combinations
- Residuals are modelled with an AR(1) noise model \rightarrow more robust parameter inference
- Model calibration with a least-squares solver \rightarrow residuals / noise minimized
- Parameter space exploration with Markov chain Monte Carlo (MCMC), computation of
 - model output (linearized NSE-criterion) gradients w.r.t. parameters

Fig. 2: Non-Linear Recharge Model -Adapted After *Collenteur et al. (2021)*

Results – Milandre Karst System

Active Subspaces - 1D and 2D Sufficient Summary Plots

Fig. 3: Observed and Simulated Spring Discharge, Autocorrelation (ACF) and Cross-Correlation (CCF) Functions for the Milandre Karst System

TFN Modelling

- Non-linear RM needed for satisfactory fit and preservation of system characteristics (Fig. 3)
- RM compensates for system non-linearity
- modelled processes may not be physically measurable
- Approach outperformed 11 out of 13 other models in the KMC (see *Jeannin et al. (2021)*)

Dimensionality Reduction

- Sensitivity (Fig. 5) of diffuse response shape parameters reflects real system functioning (mainly diffuse recharge for Milandre)
- 2 active dimensions / linear combinations identified (from 13 original parameters)
- Clear two-dimensional relationship between parameter space and model output (Fig. 4)

Fig. 4: 1D and 2D Sufficient Summary Plots Representing the Parameter Samples in the Active Subspace and Relationships with the Model Output; Colors on the Main **Diagonal Represent Point Density**

Normalized Parameter Sensitivities

Fig. 5: Normalized Parameter Sensitivities in the Full Input Space and in the Active Subspace

Summary and Outlook

TFN Modelling

- System non-linearity gets represented as part of recharge process \rightarrow difficult physical interpretability
- TFN model performed very good compared to other approaches of the KMC
- Approach is suitable for representation of karst system spring discharge

Dimensionality Reduction

- Process and parameter relationships could be revealed to characterize the modelling framework and the studied system
- Lower dimensional structures always identified \rightarrow beneficial for subsequent use (surrogate models, parameter inference in low-dimensional setting etc.)

¹ TU Dresden, Institute of Groundwater Management ² TU Dresden, Institute of Hydrology and Meteorology

Correspondence: Max G. Rudolph

Diversity

Makes Our

Science

Better

³ University of Freiburg, Chair of Hydrological Modelling and Water Resources

TU Dresden – Institute of Groundwater Management

⁵ University of Graz, Institute of Earth Sciences

⁶ University of Göttingen, Department of Applied Geology

