THE MORPHOLOGY OF GLACIOVOLCANIC CAVES
Longitudinal studies of glaciovolcanic caves in the Cascade Volcanic Arc reveal a window into the underlying processes. At Mt. Hood, we have observed a decade-long reduction in cave passage contemporaneous with the retreat of the Sandy Glacier. On the summit of Mt. Rainer, a persistent circum-crater conduit in the glacial plug connects fumaroles to the surface through a web of dynamic rising vents. In the crater of Mt. Saint Helens, a complex array of recently formed caves is arranged astride the 2004-2008 lava dome. The caves are clearly associated with fumaroles and are evolving into persistent conduits in a growing glacier.
Comparative assessment between glaciovolcanic caves of the Cascades and other examples reveals generalized morphological patterns: 1) thermally influenced englacial conduits, where warm water creates melt-void caves that are enlarged by atmospheric advection; 2) isolated ‘steam domes’, whose size and shape are dictated by the rate of convective fumarole emissions; 3) lateral conduits in glacial ice are often chains of steam domes positioned around fumaroles with a size interannually maintained by atmospheric advection; 4) chimneys and rising conduits venting fumaroles with size and shape guided by accumulation or ablation of firn; 5) crevasses and moulins intersecting glaciovolcanic caves maintained by heat flux and atmospheric advection; and 6) ice-marginal melt at the ice-rock interface enhanced at the glacial margin and maintained by fluid movement but with highly variable morphology and persistence governed by bedload.