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Orbicules within late—stage 197 Ma mafic dikes at Merry Widow Mtn, Vancouver Island, Canada



Do arc magmas liberate significant CO, from crustal carbonates?

Increasing evidence suggesting crustal carbonates play a larger role in CO, outgassed at arcs
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Carbonate assimilation and CO, transport in arc magmas

Complimentary perspectives

Field
 focus on active arcs
* detailed studies on the country rock

Experiments
» focus on carbonate assimilation limits
and fractionation products

Approach

paleo-arc exposures of magma-
carbonate interactions to understand
assimilation and C transport




Jurassic Bonanza Arc, Vancouver Island, Canada:
Magma-carbonate interactions evident from abundant skarn occurrences
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Merry Widow Mtn, Vancouver Island, Canada:

Variety of magma-limestone interactions (m-scale dikes, km-scale pluton)
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Unique late-stage orbicular mafic dikes

Field textures, observations suggest liquid immiscibility

“foamy dikes”

hand sample | polished surface | modal analysis | thin section
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Textures and mineralogy of orbicules vs host melt

Identical intergranular textures, calcic phases within orbicules
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Orbicular mafic dikes have unique geochemistry

Chemical evidence of magmas interacting with limestone wallrock - majors

k ~reverse differentiation

17.5 |\ 75% lirkestone . . .
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Orbicular mafic dikes have unique geochemistry

Chemical evidence of magmas interacting with limestone wallrock - trace
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element/chondrite
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* orb dikes have low REE abundances

* orb dike interiors have lower abundances than margins

* decrease in REE abundances with increase orb %

* dikes appear to be on a mixing line with an REE-depleted source (i.e., limestone wallrock)
* can achieve interior compositions by adding 4-16% limestone



Orbicular mafic dikes have unique geochemistry

Chemical evidence of magmas interacting with limestone wallrock - trace
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Are the orbicular dikes a result of magma-carbonate mixing or assimilation?

Test unique geochemical trends of orbicular dike with assimilation and mixing models

MgO mol %
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Thermodynamic models (MELTS — Gualda et
al., 2012) cannot achieve orbicule dike
interior compositions

Mixing model indicates 3-11 % limestone
addition can achieve orbicular interior
compositions (produce ~1.5 -5 wt.% CO,)



How do the orbicular dikes compare to basalt-limestone experiments?

Orbicular dike and orbicules are geochemically similar to experimental melts
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High P experimental melts to estimate limestone consumed

High pressure (0.5 — 1 GPa) estimates ~ 3 — 6 % limestone consumed
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comparisons to higher P (0.5 — 1 GPa)
experiments indicate ~3 to 6% carbonate
consumed (1.5 — 3 wt.% CO, produced)

experiments conducted at pressures
greater than our crustal setting (<2 kbar)



Low P experimental melts to estimate limestone consumed

Low pressure (<0.5 GPa) estimates ~ 5 — 15 % limestone consumed
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Conceptual model for orbicule dike formation

CO:z outgassing

= ~100 bars T T T T cold/brittle . . . . .
i supracrustal * extensive primitive mafic diking generates partial
e rocks? melts from the limestone wallrock

stratified
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cooling, gabbroic * excess CO, produced from generating partial melts
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Summary

* Late-stage mafic dikes rich in ultra-calcic orbicules indicate evidence of
magma-carbonate reactions in the Jurassic Bonanza arc

Mixing models indicate 3-16 % of an added calcite component, and
possibly higher (~25%) to produce orbicules (~ 1 —11 wt.% CO,)

Low-pressure (<1 GPa) basalt-limestone experiments produce hybrid
melts that are similar in composition to orbicules, and suggest similar
addition of limestone to mixing models (5 — 15%)
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Mt Bromo (and others), Indonesia — a very active arc volcano built on carb stratigraphy
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