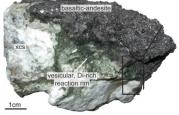


Orbicules within late-stage 197 Ma mafic dikes at Merry Widow Mtn, Vancouver Island, Canada

Do arc magmas liberate significant CO₂ from crustal carbonates? Increasing evidence suggesting crustal carbonates play a larger role in CO₂ outgassed at arcs



emitted gases (global arcs):

erupted xenoliths:

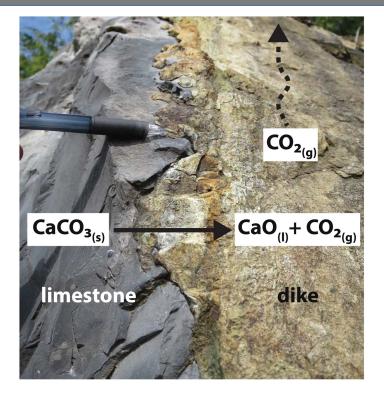
(b) sample: M-XCS-1

Merapi (from Deegan et al., 2010)

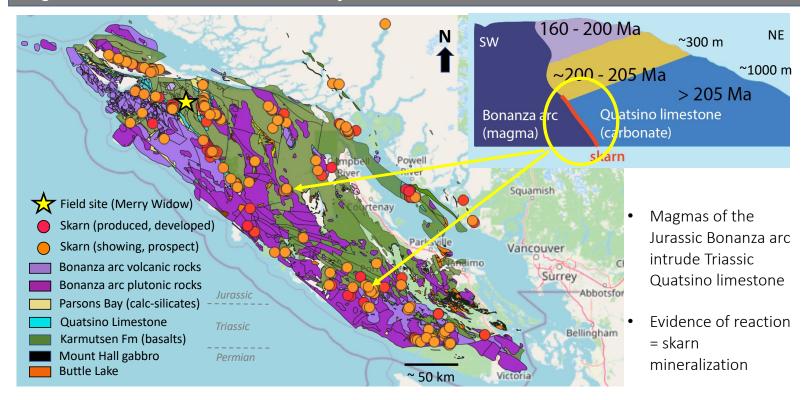
Carbonate assimilation and CO₂ transport in arc magmas

Complimentary perspectives

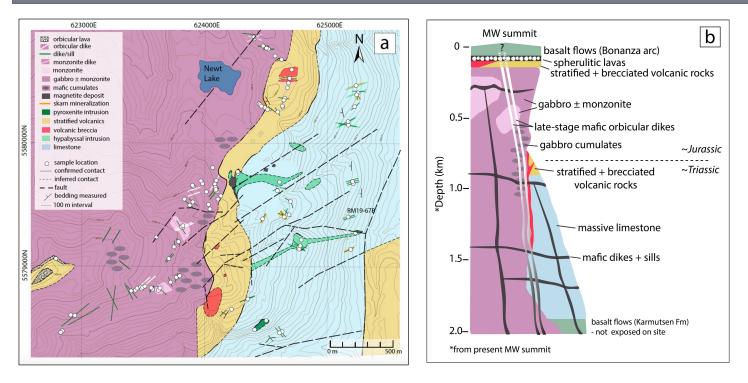
Field

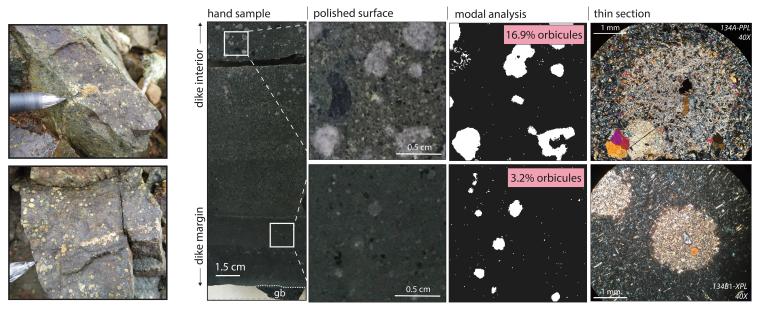

- focus on active arcs
- detailed studies on the country rock

Experiments

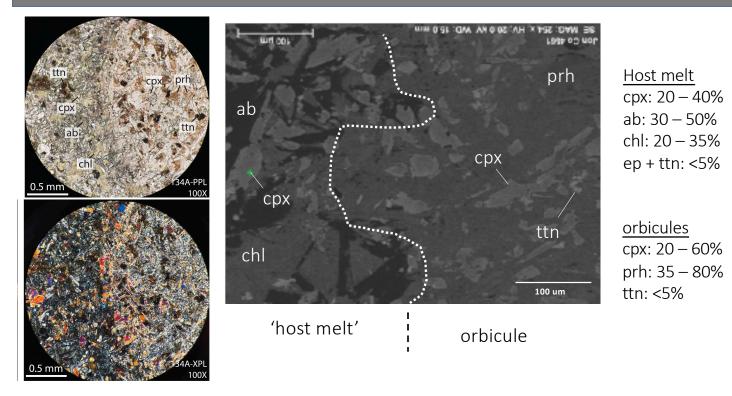

• focus on carbonate assimilation limits and fractionation products

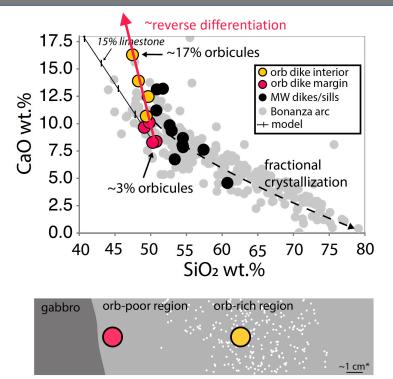
<u>Approach</u>


paleo-arc exposures of magmacarbonate interactions to understand assimilation and C transport


Jurassic Bonanza Arc, Vancouver Island, Canada: Magma-carbonate interactions evident from abundant skarn occurrences

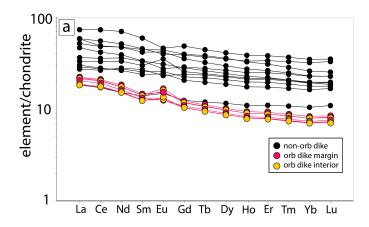
Merry Widow Mtn, Vancouver Island, Canada: Variety of magma-limestone interactions (m-scale dikes, km-scale pluton)


Unique late-stage orbicular mafic dikes *Field textures, observations suggest liquid immiscibility*

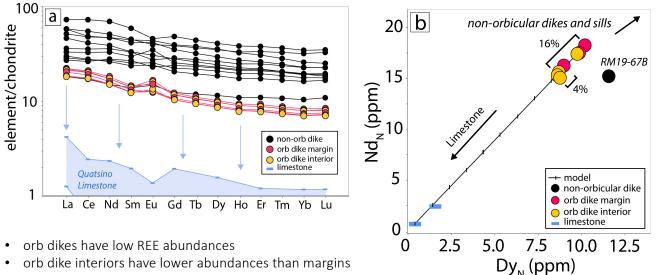

"foamy dikes"

orbicules are microcrystalline

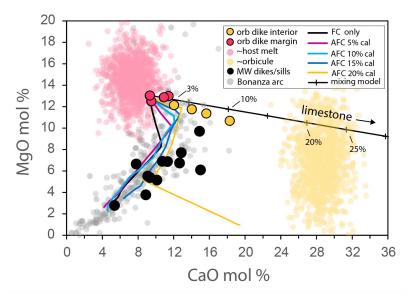
Textures and mineralogy of orbicules vs host melt Identical intergranular textures, calcic phases within orbicules



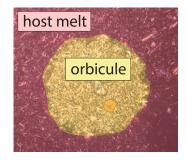
Orbicular mafic dikes have unique geochemistry Chemical evidence of magmas interacting with limestone wallrock - majors


- orbicular dikes on a ~reverse differentiation trend: increasing Ca with decreasing Si, decreasing Mg, Fe with decreasing Si
- orbicule-poor dike margins are calcalkaline
- orbicule-rich dike interiors are tholeiitic (Si-undersaturated, Fe-enriched)

Orbicular mafic dikes have unique geochemistry Chemical evidence of magmas interacting with limestone wallrock - trace

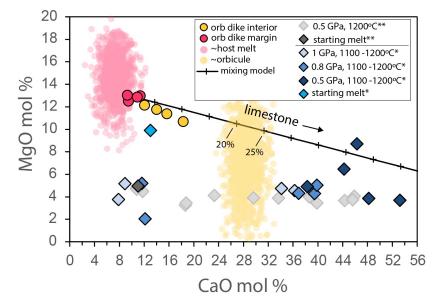

- orb dikes have low REE abundances
- orb dike interiors have lower abundances than margins
- decrease in REE abundances with increase orb %
- dikes appear to be on a mixing line with an REE-depleted source (i.e., limestone wallrock)
- can achieve interior compositions by adding 4-16% limestone

Orbicular mafic dikes have unique geochemistry Chemical evidence of magmas interacting with limestone wallrock - trace



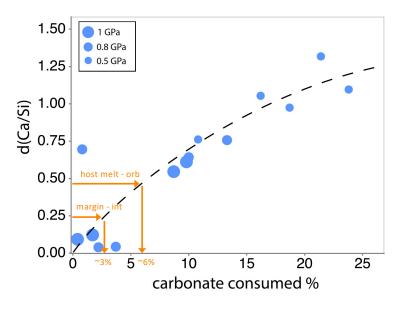
- decrease in REE abundances with increase orb %
- dikes appear to be on a mixing line with an REE-depleted source (i.e., limestone wallrock)
- can achieve interior compositions by adding 4-16% limestone

Are the orbicular dikes a result of magma-carbonate mixing or assimilation? *Test unique geochemical trends of orbicular dike with assimilation and mixing models*



FC model conditions = hydrous (5 wt.% H₂O), fO₂ NNO+1, 2000 bars isobaric

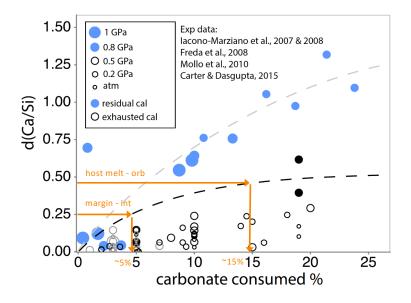
- Thermodynamic models (MELTS Gualda et al., 2012) cannot achieve orbicule dike interior compositions
- Mixing model indicates 3-11 % limestone addition can achieve orbicular interior compositions (produce ~1.5 – 5 wt.% CO₂)


How do the orbicular dikes compare to basalt-limestone experiments? Orbicular dike and orbicules are geochemically similar to experimental melts

Exp data: Carter & Dasgupta, 2015 Deegan et al., 2010

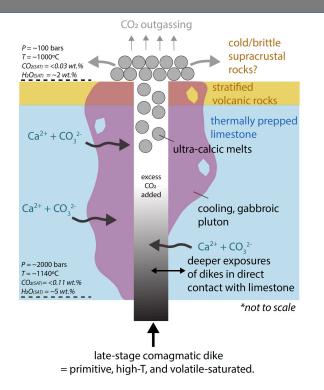
- orbicular dikes, orbicules, and hybrid melts fall on a mixing model trend with limestone
- orbicule compositions are similar to the experimental hybrid melts
- if the orbicules are a hybrid melt, they may be a results of 25% limestone addition (produces 11 wt.% CO₂)

High P experimental melts to estimate limestone consumed High pressure (0.5 – 1 GPa) estimates \sim 3 – 6 % limestone consumed



d(Ca/Si) = ABS(Ca/Si_i - Ca/Si_i) Exp i = exps starting melts, orb margins, orb host melt f = exps hybrid melts, orb interiors, orb compositions comparisons to higher P (0.5 – 1 GPa) experiments indicate ~3 to 6% carbonate consumed (1.5 – 3 wt.% CO₂ produced)

 experiments conducted at pressures greater than our crustal setting (<2 kbar)


Low P experimental melts to estimate limestone consumed Low pressure (<0.5 GPa) estimates ~ 5 – 15 % limestone consumed

 comparisons to lower P (<0.5 GPa) experiments indicate ~5 to 15% carbonate consumed (2 – 7 wt.% CO₂ produced)

d(Ca/Si) = ABS(Ca/Si_i - Ca/Si_f) i = exps starting melts, orb margins, orb host melt f = exps hybrid melts, orb interiors, orb compositions

Conceptual model for orbicule dike formation

- extensive primitive mafic diking generates partial melts from the limestone wallrock
- partial melt of limestone wallrock enters the dikes directly (dike-limestone contact) or indirectly (via pluton in contact with the limestone)
- excess CO₂ produced from generating partial melts is immediately offgassed, leaving behind a residual and more viscous ultra-calcic melt in the form of a segregated orbicule

Summary

- Late-stage mafic dikes rich in ultra-calcic orbicules indicate evidence of magma-carbonate reactions in the Jurassic Bonanza arc
- Mixing models indicate 3-16 % of an added calcite component, and possibly higher (~25%) to produce orbicules (~ 1 – 11 wt.% CO₂)
- Low-pressure (<1 GPa) basalt-limestone experiments produce hybrid melts that are similar in composition to orbicules, and suggest similar addition of limestone to mixing models (5 – 15%)

