#### Remediation potentials of Pb, Zn, and Mn in mining impacted water by a novel Mn-oxidizing fungus from Tar Creek Superfund Site, Oklahoma

Wei Ren<sup>1,2</sup>, Tingying Xu<sup>1,\*</sup>

1 Boone Pickens School of Geology, Oklahoma State University

2 College of Forestry, Northwest A&F University

GSA connects, October 9, 2022







#### **Mn oxides**

#### Mn (III/IV) oxides



Adsorb

#### **Trace elements**

Cu, Co, Cd, Zn, Ni, Sn, Pb, Ca,

Fe, Ra, Hg, U, Pu, Po, As, Se, and Th...

Incorporate

Villalobos et al. (2003) Geochimica et Cosmochimica Acta



#### **Biogenic Mn oxides: important minerals in nature**

Mn (II) aq



Mn (III/IV) oxides



Stagonospora sp. SRC11sM3a Santelli et al. (2011) GCA



*Leptothrix* spp. *Tebo et al. (1997) Geomicrobiology*  Hydrated interlayers





Manceau et al. (2007) GCA

Mn oxides can incorporate and adsorb micronutrients and metal pollutants at vacancies and particle edges



## Study Site: Tar Creek superfund site, Oklahoma



• Major concern of metals:

| Elements       | Tar Creek | EPA drink water |  |
|----------------|-----------|-----------------|--|
| Lead (Pb)      | 60 ppb    | 15 ppb          |  |
| Zinc (Zn)      | 10 ppm    | 5 ppm           |  |
| Manganese (Mn) | 2 ppm     | 0.05 ppm        |  |

• Cost-effective remediation treatments needed!





## **Objectives**



- Need to find a fungus that can oxidize Mn(II) and remove metals.
- What will affect the formation of Mn oxides and metals removal rates?
- Why can Mn-oxidizing fungus oxidize Mn(II)?
- What's the main pathway of the myco-genic Mn(II) oxidization process?



#### **Isolate Mn-oxidizing fungi from Tar Creek superfund site, Oklahoma**



Media AY+200 μM MnCl<sub>2</sub> <sup>1</sup>/<sub>2</sub> PDA+200 μM MnCl<sub>2</sub> <sup>1</sup>/<sub>2</sub> MEA +200 μM MnCl<sub>2</sub>

**Leucoberbelin Blue (LBB) assay** Pick fungi that formed brown particle to do LBB assay.





# Found a new fungus that can oxidize Mn(II)





TC1: Curvularia lunata (OP531858)





## **Experimental Setup**

- Target fungi: TC1
- Qualitative analysis of Mn(II) oxidation capacity in solid media
  - 0 or 200 µM Mn(II)
  - Spike Pb(II) and Zn(II) of different concentration
- Quantitative analysis of Mn(II) oxidation capacity in liquid media
  - 200 µM Mn(II)
  - Spike Zn(II) of different concentration
- Growth media:
  - AY media (HEPES buffer, pH 7)
- The Mn(II) oxidizing pathway (on going)
  - Enzyme/Extracellular superoxide



# Zn and Pb show distinct impacts on fungal growth and Mn(II) oxidation

| AY      | 1 µM Pb     | 10 µM Pb   | 50 µM Pb    | 100 µM Pb |
|---------|-------------|------------|-------------|-----------|
| Atter   | BYMADIA     | Axmooble C | AYMANDSO    | Atmabled  |
| AY+Mn   | 1 µM Zn     | 10 µM Zn   | 50 µM Zn    | 100 µM Zn |
| Arten a | Atmoses all | Armateo    | At Madan 57 | Armanak   |

- Pb inhibited the formation of Mn oxides and the growth of fungi.
- Zn inhibited the formation of Mn oxides but didn't inhibit the growth of fungi.



### **Zn and Pb show distinct impacts on fungal growth and Mn(II) oxidation**

**Fungal growth curve** 



- Pb inhibited the formation of Mn oxides and the growth of fungi. ٠
- Zn inhibited the formation of Mn oxides but didn't inhibit the growth of fungi.



### Zn inhibited the formation of Mn oxides



 The formation of Mn oxides was inhibited by Zn, especially when the concentration of Zn was above 40 µM.

---0 μM Zn ---10 μM Zn ---20 μM Zn ---40 μM Zn ---60 μM Zn ---80 μM Zn



## **Possible mechanism of Zn inhibiting Mn(II) oxidation**



- Hypothesis
- If Mn(II) oxidation of our fungus is regulated by multicopper oxidases (MCOs), additional Cu should alleviate the inhibitory effect of Zn.

Zn(II) changed structure of multicopper oxidases in *Bacillus* sp. to inhibit the oxidation. *Soldatova* (2021) J. Inorg. Biochem.



# The effect of Cu on the formation of Mn oxides

#### Setup

- AY liquid media with  $200 \mu M Mn(II)$
- Spike in

Zn(II) 10, 20, 40, 60, 80 µM Cu(II) 0, 1, 10 µM

#### Results

- Cu increased Mn removal rate.
- Cu didn't alleviate the inhibitory effect of Zn.



#### **Mn(II) removal curve**





**TC1:** *Curvularia lunata* (GenBank accession number: OP531858)

#### **Results**

- Fungus TC1 can effectively remove Mn(II).
- High concentrations of Pb and Zn have different inhibition mechanisms on the oxidation of Mn(II) and the growth of fungi.
- The oxidation mechanisms of our fungus should be led by superoxide or another enzyme.



### **Future work**

- Study the detailed mechanisms of Mn(II) oxidation by fungus TC1
  - Ongoing experiments are focused on elucidating potential pathways of myco-genic Mn(II) oxidization process.
  - We are trying to figure out whether our fungus oxidizes Mn(II) by enzymes, superoxide, or a mixture of them.







## Acknowledgements

#### **Collaborators**

- Xu's Geomicrobiology Lab members (OSU)
- Cara Santelli (UMN)
- Ming Tang (NWSUAF)
- Rolf Prade (OSU)
- Natascha Riedinger (OSU)

#### **Funding**

- China Scholarship Council
- OSU





## **Thank you! Question?**