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GEOLOGICAL SETTING

A) Early Ordovician relative position of the main paleocontinents, after Cocks & Torsvik [1]. B) Lithology of the preserved extension of the Ordovician 
Paleobassin in Baltic and Scandinavia, after Popov et al. [2]. C) Drill cores location in the Toolse deposit.
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▪ Tremadocian sedimentary formation (485.4 to 477.7Ma), spread over the Baltic Ordovician paleobassin.

▪ Extension of shelly phosphorite deposits from Estonia to NW Russia, from the Pakerort stage (equal of Gasconadian stage).

▪ Kallavere formation: sandstone with abundant phosphatic brachiopods detritus related to coastal upwelling zones and 
deposited in shallow, coastal environment of a peritidal sea. Largest phosphate reserve in Europe, 3 billon metric tons [3].
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Understanding and quantification of phosphorites REE+Y resources in North Estonia



General stratigraphy and cross section of the Toolse deposit,
with detail of the Kallavere Formation, regional stratigraphy
after Nõlvak et al. [4].

Cross-section of the Tremadocian sedimentary rocks after Heinsalu et
al. [5]. 1 - Compact claystone 2 - Kerogenous black shale ‘Graptolite
argillite’. 3 – Silty sandstone with BS layers. 4 - Sandstone. 5 – Silty
sandstone with clays. 6 – Debris of phosphatized brachiopods. 7 –
Intact valves. 8 – Phosphatized pebbles. 9 – Clay interbeds. 10 –
Glauconite. 11 – Pyrite. 3

GEOLOGICAL SETTING AND ANALYZE PLAN
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General stratigraphy and cross section of the Toolse deposit,
with detail of the Kallavere Formation, regional stratigraphy
after Nõlvak et al. [4].

Visual description of the analyzed drill cores, represented in 50cm intervals

▪ REESN+YSN 140 whole-rock and 14 discrete black-shale samples. Development of a general ore model.

GEOLOGICAL SETTING AND ANALYZE PLAN



Ore section

10 cm
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Silty sandstone and low phosphorus
content. Occurrence of transgressive
black-shale interbeds, with vanadium
rich clays, K-feldspars and detrital heavy
minerals.

Coarser sandstone, cemented by quartz
overgrowth (B.1), with layers of dark
shell fragments (B.2)

Horizons, sometime cross-bedded, with
downward increasing fragments size and
content (C.3)

Phosphatic shell coquinas with pyrite
nodules (C.4&5) dolomitic cement (C.6)

A

B
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MINERALOGY & FEATURES

Optical microscopy images of shelly phosphorites



Silty sandstone and low phosphorus
content. Occurrence of transgressive
black-shale interbeds, with vanadium
rich clays, K-feldspars and detrital heavy
minerals.

Ore section

10 cm
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Coarser sandstone, cemented by quartz
overgrowth (B.1), with layers of dark
shell fragments (B.2)

Horizons, sometime cross-bedded, with
downward increasing fragments size and
content (C.3)

Phosphatic shell coquinas with pyrite
nodules (C.4&5) dolomitic cement (C.6)
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Optical microscopy images of shelly phosphorites



Silty sandstone and low phosphorus
content. Occurrence of transgressive
black-shale interbeds, with vanadium
rich clays, K-feldspars and detrital heavy
minerals.
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Lattice parameters of different heating steps from High-Temperature 
XRD experiment on intact shells

c
(
Å

)

C) Occurrence of two phases of low crystallinity apatite :

▪ A ‘biogenic’ hydroxyapatite, rich in H2O and CO2, unstable 
phase during burial.

▪ A stable carbonate fluorapatite (CAF) phase, close to 
francolite structure:

Ca10-a-bNaa-Mgb(PO4)6-x(CO3)x-y-z(CO3.F)y(SO4)2

300 °C: Shrinking of c
parameter due to water 

emission

>700 °C: One phase model

Coarser sandstone, cemented by quartz
overgrowth (B.1), with layers of dark
shell fragments (B.2)

Horizons, sometime cross-bedded, with
downward increasing fragments size and
content (C.3)

Phosphatic shell coquinas with pyrite
nodules (C.4&5) dolomitic cement (C.6)
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Zircon rich 
layers

▪ High correlation between P2O5 and ∑REE : apatite as the sole carrier for REE.

▪ High similarity of trends between the different REEs : Global REE enrichment mechanism(s) and 
reliable bases for REE-resource calculation.

C

BA

REE+Y DISTRIBUTION – GENERAL MODEL TREND WITH DEPTH



I: No anomaly

IIa: Apparent positive anomaly

IIb: Apparent negative anomaly

IIIa: True positive anomaly

IIIb: True negative anomaly

IV: Positive La-anomaly   

disguises positive Ce-

anomaly
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Ce anomaly plot after Bau & Dulski [7]Average REESN+YSN data per 10 cm intervals. 
Red doted lines stand for zircon-rich intervals

B

B & C) Ce anomalies and implications 
for depositional and diagenetic redox 
conditions

▪ Positive Ce Ω anomalies or no 
anomalies: not consistent with 
shallow oxic conditions.

▪ Correlation between Ce Ω and ∑REE: 
progressive scavenging after 
deposition, not driven by redox states.

A

REE+Y ENRICHMENT

1

A) REE+Y enrichment and features

▪ MREE enrichment and ‘bell-shaped’ 
patterns: secondary signature, different 
from the pristine ‘hat-pattern’ of coastal 
bioapatite [6]. High magnitude (11).

▪ Y positive anomaly: signal of oxic, 
shallow environment.

▪ LREE enrichment, especially in the 
Maardu Member.



D) Local variations during the sedimentation

▪ Local variabilities (Ce, Y) in synsedimentary or diagenetic pore water.

▪ Black-shales with low REE and P content (P2O5 < 2%), but with developing
bell-shaped pattern : general diagenetic enrichment/overprint. 10

REESN+YSN data for all drill cores and BS interbeds

D

Average REESN+YSN data per 10 cm intervals. 
Red doted lines stand for zircon-rich intervals

A D

REE+Y ENRICHMENT

Zircon 
rich 

layers

A) REE+Y enrichment and features

▪ MREE enrichment and ‘bell-shaped’ 
patterns: secondary signature, different 
from the pristine ‘hat-pattern’ of coastal 
bioapatite [6]. High magnitude (11).

▪ Y positive anomaly: signal of oxic, 
shallow environment.

▪ LREE enrichment, especially in the 
Maardu Member.

B & C) Ce anomalies and implications 
for depositional and diagenetic redox 
conditions

▪ Positive Ce Ω anomalies or no 
anomalies: not consistent with 
shallow oxic conditions.

▪ Correlation between Ce Ω and ∑REE: 
progressive scavenging after 
deposition, not driven by redox states.
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Diagnostic ratios of REE+Y and P2O5.

Red dots stand for zircon-rich intervals

REE+Y intake mechanisms, environment and 
precursor carriers phases during diagenesis

▪ A) Trend toward diagenetic enrichment [8].

▪ B) Bell-shaped index : diagenetic MREE 
enrichment was at constant intensity and in 
equilibrium with the pore water [9].

MREE are primarily carried by Fe-oxyhydroxides
[10].

▪ C) MnO-oxyhydroxides as main contributor of 
LREE (mainly Ce3+, captured on MnO-oxides 
surface) content in the shelly phosphorite 
[11,12].

▪ D) Slight increase in the (La/Yb)SN ratio with the
more REE-rich samples : adsorption as main REE
intake mechanism during the diagenesis in
authigenic CAF-apatite [13].
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DB

C

Intake by 

adsorption

REE+Y CARRIERS AND INTAKE

𝐵𝑆𝐼 =
2 ∗ 𝑆𝑚 𝑆𝑁 + 𝐺𝑑 + 𝐷𝑦 𝑆𝑁

Τ𝐿𝑎 𝑆𝑁 + 𝑃𝑟 𝑆𝑁 + 𝑁𝑑 𝑆𝑁 3 + Τ𝐻𝑜 𝑆𝑁 + 𝐸𝑟 𝑆𝑁 + 𝑇𝑚 𝑆𝑁 + 𝑌𝑏 𝑆𝑁 + 𝐿𝑢 𝑆𝑁 5



REE Estonian and NW Russian brachiopods and conodonts data from 
Lécuyer et al. [14], and Grandjean-Lécuyer et al. [15].

Evolution of REE fractionation signals of 
shelly phosphorite, from deposition to burial 
in coastal paleosettings

▪ A) ‘Hat-shaped’ to ‘bell-shaped’ pattern path of
shells REE signals :

▪ Equilibrium with coastal seawater (1).

▪ Deposition in nutrient rich water (2).

▪ Intake in equilibrium with diagenetic pore 
fluids (3).

▪ B) REE intake by substitution mechanism in
non-altered shells :

▪ Initial substitution pattern in biogenic 
hydroxyapatite, in equilibrium with 
seawater.

▪ Superposition of an adsorption-related 
fractionation pattern in authigenic CAF-
apatite during the burial/early diagenesis.

(3)

(1)

(2)

Coastal conodonts data from Grandjean-Lécuyer et al. 
Cou 23-34a

Estonian and NW Russian non-altered brachiopods 
data from Lécuyer et al.

Estonian ‘altered’ brachiopods data from Lécuyer et al.

REE+Y CARRIERS AND INTAKE – HISTORICAL DATA & DEPOSITION

12



13

GENERAL MODEL

▪ A. Upwelling of deep-water rich in precursor carrier phases and transport of brachiopods fragments to the near-shore.

▪ B. Deposition of shells in sediment with oxic nutrient-rich pore water. 

▪ C. Shallow burial and attainment of suboxic conditions due to steep redox gradient. Transformation of hydroxyapatite in CAF-apatite. 

Desorption of Mn-oxyhydroxides and release of LREE. Accumulation of Fe2+ and MREE in FeSx. 

▪ D. Development of anoxic conditions during the early-diagenesis. Release of MREE and acquisition of ‘bell-shaped’ pattern.
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CONCLUSION, UPCOMING STUDIES & PERSPECTIVES

Conclusion

▪ Multistage nature of REE+Y enrichment process within the
shelly phosphorite resources of the Kallavere Formation.

▪ REE scavenging predominantly controlled by adsorption to 
authigenic CAF-apatite during two consequent early-diagenetic 
enrichment stages.

Upcoming studies and perspectives

▪ MLA and EMPA systematic profiles investigations for ore 
processing and modelling.

▪ LA-ICP-MS mapping detailed REE+Y distribution in shells.

▪ High-resolution analyses for Tremadocian paleosettings, from 
phosphorites to black-shales.

▪ Comparison to other organophosphatic deposit / upwelling-
related deposits (Permian and Cambrian deposits, Namibian 
shelly deposits).

Example of FE-SEM element mapping tests and core
section of the transition layers between black-shales
and phosphorites
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