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GEOLOGICAL SETTING
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A) Early Ordovician relative position of the main paleocontinents, after Cocks & Torsvik [1]. B) Lithology of the preserved extension of the Ordovician
Paleobassin in Baltic and Scandinavia, after Popov et al. [2]. C) Drill cores location in the Toolse deposit.

= Tremadocian sedimentary formation (485.4 to 477.7Ma), spread over the Baltic Ordovician paleobassin.
= Extension of shelly phosphorite deposits from Estonia to NW Russia, from the Pakerort stage (equal of Gasconadian stage).

= Kallavere formation: sandstone with abundant phosphatic brachiopods detritus related to coastal upwelling zones and
deposited in shallow, coastal environment of a peritidal sea. Largest phosphate reserve in Europe, 3 billon metric tons [3].

Understanding and quantification of phosphorites REE+Y resources in North Estonia
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GEOLOGICAL SETTING AND ANALYZE PLAN
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with glauconite
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Brownish-grey sandstone with argillite
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Brownish-grey sandstone with dense
phosphorites layers
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of clay

General stratigraphy and cross section of the Toolse deposit,
with detail of the Kallavere Formation, regional stratigraphy
after Nolvak et al. [4].
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Cross-section of the Tremadocian sedimentary rocks after Heinsalu et
al. [5]. 1 - Compact claystone 2 - Kerogenous black shale ‘Graptolite
argillite’. 3 - Silty sandstone with BS layers. 4 - Sandstone. 5 - Silty
sandstone with clays. 6 - Debris of phosphatized brachiopods. 7 -
Intact valves. 8 - Phosphatized pebbles. 9 - Clay interbeds. 10 -
Glauconite. 11 - Pyrite.




GEOLOGICAL SETTING AND ANALYZE PLAN
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Visual description of the analyzed drill cores, represented in 50cm intervals

with detail of the Kallavere Formation, regional stratigraphy

after Nolvak et al. [4].
REEgy+Ygy 140 whole-rock and 14 discrete black-shale samples. Development of a general ore model.
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MINERALOGY & FEATURES

A Visual

Thickness (m) for the average ore section and each member
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MINERALOGY & FEATURES
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Thickness (m) for the average ore section and each member

MINERALOGY & FEATURES
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a (A)
Lattice parameters of different heating steps from High-Temperature
XRD experiment on intact shells

C) Occurrence of two phases of low crystallinity apatite :

= A ‘biogenic’ hydroxyapatite, rich in H,O and CO,, unstable
phase during burial.

= A stable carbonate fluorapatite (CAF) phase, close to
francolite structure:

Cay0-2-6Na;-Mgp(PO4) 6« (CO3)y.y-,(CO3.F), (SO,),



REE+Y DISTRIBUTION - GENERAL MODEL TREND WITH DEPTH
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= High correlation between P,0Os; and >REE : apatite as the sole carrier for REE.

= High similarity of trends between the different REEs : Global REE enrichment mechanism(s) and
reliable bases for REE-resource calculation.



Average REEgy+Ygy data per 10 cm intervals. Ce anomaly plot after Bau & Dulski [7]
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deposition, not driven by redox states.
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Average REEgy+Ygy data per 10 cm intervals. REEgy+Ygy data for all drill cores and BS interbeds

Red doted lines stand for zircon-rich intervals
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AL = Black-shales with low REE and P content (P,Os < 2%), but with developing
TECH bell-shaped pattern : general diagenetic enrichment/overprint. 10



REE+Y CARRIERS AND INTAKE

3.0

2.5
REE+Y intake mechanisms, environment and 20
precursor carriers phases during diagenesis '
&1.5
= A) Trend toward diagenetic enrichment [8]. >
1.0
= B) Bell-shaped index : diagenetic MREE
enrichment was at constant intensity and in 0.5
equilibrium with the pore water [9].
0.0
MREE are primarily carried by Fe-oxyhydroxides
[10]. 9.0
= C) MnO-oxyhydroxides as main contributor of 8.5
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surface) content in the shelly phosphorite 7.5
[11,12]. 7.0
£ 6.5
= D) Slight increase in the (La/Yb)gy ratio with the 4,
more REE-rich samples : adsorption as main REE 55
intake mechanism during the diagenesis in 5'0
authigenic CAF-apatite [13]. 4'5
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REE+Y CARRIERS AND INTAKE - HISTORICAL DATA & DEPOSITION

Evolution of REE fractionation signals of
shelly phosphorite, from deposition to burial
in coastal paleosettings

= A) ‘Hat-shaped’ to ‘bell-shaped’ pattern path of
shells REE signals :

= Equilibrium with coastal seawater (1).
= Deposition in nutrient rich water (2).

= Intake in equilibrium with diagenetic pore
fluids (3).

= B) REE intake by substitution mechanism in
non-altered shells :

= Initial substitution pattern in biogenic
hydroxyapatite, in equilibrium with
seawater.

= Superposition of an adsorption-related

fractionation pattern in authigenic CAF-
apatite during the burial/early diagenesis.
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REE Estonian and NW Russian brachiopods and conodonts data from
Lécuyer et al. [14], and Grandjean-Lécuyer et al. [15].
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GENERAL MODEL

A | Marine regression in the shallow Ordovician basin

Coastal Fe input

Formation of insolubles oxyhydroxides

Oxygenated and productive layer e o ’ W nells or fragments
HracNioRT working

B | Sea level fluctuations

Coastal Fe input
§ b Ve -
Oxygenated and productive layer ® ¢ O
C | Onset of sedimentation

Coastal Fe input

5 . una!
- < - 7 “d.b

Oxygenated and productive layer :' L) : ,'_f ) a:ﬁ‘“e‘s

D |Transition towards marine transgression and black shale deposition

Oxygenated and productive layer

B. Deposition of shells in sediment with oxic nutrient-rich pore water.
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D. Development of anoxic conditions during the early-diagenesis. Release of MREE and acquisition of ‘bell-shaped’ pattern.
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A. Upwelling of deep-water rich in precursor carrier phases and transport of brachiopods fragments to the near-shore.

C. Shallow burial and attainment of suboxic conditions due to steep redox gradient. Transformation of hydroxyapatite in CAF-apatite.
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CONCLUSION, UPCOMING STUDIES & PERSPECTIVES

Conclusion

= Multistage nature of REE+Y enrichment process within the
shelly phosphorite resources of the Kallavere Formation.

= REE scavenging predominantly controlled by adsorption to
authigenic CAF-apatite during two consequent early-diagenetic
enrichment stages.

0.5cm
}'—l SE MAG: 200 x HV: 15,0 kV WD: 8,5 mm

Upcoming studies and perspectives : oy

= MLA and EMPA systematic profiles investigations for ore
processing and modelling.

= LA-ICP-MS mapping detailed REE+Y distribution in shells.

= High-resolution analyses for Tremadocian paleosettings, from
phosphorites to black-shales.

= Comparison to other organophosphatic deposit / upwelling-
related deposits (Permian and Cambrian deposits, Namibian
shelly deposits).

TAL Example of FE-SEM element mapping tests and core
TECH section of the transition layers between black-shales
and phosphorites
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