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Mass transfer processes modify the volatile budget of pre-eruptive magmas
in Láscar. These variations are significant over time and can be correlated to
explosive events in its Holocene eruptive history.

Trace Element Analysis via LA-ICPMS

Thermodynamic Modelling of Water-in-Melt Contents

• Figure 7 (Far left). Sr/Y 
and Eu/Eu* ratios in 
apatite. Yttrium and 
Europium 
concentrations [ppm] as 
X-axis, respectively. 

• Figure 8 (Left). Harker 
diagrams for trace 
elements in apatite. 
Strontium 
concentrations in the X-
axis 

Figure 10. Sr vs. SiO2, with proposed compositional end-members (enriched
basalt, EB; rhyodacite, RD; basaltic andesite, BA) compared to whole-rock and
melt inclusion samples from different volcanoes in the CVZ by Blum-Oeste &
Wörner (2016).

• Obtain, process and interpret Sr and Nd isotopic signatures (i.e., 87Sr/86Sr and 143Nd/144Nd ratios) from
whole-rock samples to quantify the influence of crustal assimilation and fractional crystallization in the
composition of Láscar pre-eruptive melts.

• Compare the whole-rock isotopic information of current samples to that of effusive samples from
Láscar to quantify the extent and influence of magmatic mass transfer processes in defining eruptive
style.

• Integrate current information from whole-rock and apatite geochemistry to that of other mineral phases
(plagioclase, pyroxene) in a comprehensive model for the plumbing system of Láscar.

Figure 1. Location of Láscar in the Central Andes

Textural Analysis via Electron Microscopy (EDS/WDS)

Figure 4. Electron microscopy images and compositional maps of a crystal from sample P01.
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Sample Type Eruptive Event
Ar-Ar 

Age [ka]
SiO2

[%wt.]

P01 Pumice Soncor Ignimbrite 26.5 60.7

P02 Pumice
Tumbres-Talabre

Eruption
9.2 59.93

P03
Banded Pumice -

Bulk
1993 Eruption - 61.44

P03A
Banded Pumice -

Dark Bands
1993 Eruption - 58.97

Table 1. Samples involved in this project, previously studied 
by Stearn (2020). 

Figure 2. Apatites 
from sample P02 
in a tape mount. 
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• Zonation patterns in Ap crystals, along
with low AST indicate small residence
times and inheritance. Apatite records
late evolutionary stages of magma.

• Triangular trends are evidence for the
strong influence of magma mixing
between three different sources in Láscar
samples.

• REE ratios suggests that plagioclase
crystallization strongly controls the
composition of samples.

• REE signatures also suggest a certain
degree of participation of crustal
assimilation.

• Volatiles concentrations in pre-eruptive
melt are controlled by the same
phenomena that controls concentration
of other elements.

• The Central Andean Volcanic zone (CVZ) is a section of the Andean volcanic
arc that has exhibited strong and consistent activity since the Pleistocene.

• Láscar volcano is the most active among the 44 stratovolcanoes present in the
CVZ. Its eruptive history comprises four stages:

➢ Stage I (< 43 ka): Effusion of andesitic lava flows. Construction of
Láscar’s 1st stratocone. Explosive events registered as pyroclastic flow
deposits (Chaile & Saltar Units).

➢ Stage II (26.5 ka): Growth and collapse of andesitic lava domes (Piedras
Grandes unit), followed by Plinian events (Soncor ignimbrite).

➢ Stage III (9.2 ka): Emission of andesitic lava flows followed by explosive
events registered as pumice fall deposits (Tumbres-Talabre pumice).

➢ Stage IV (7.1 ka): Emission of lava flows, setting of the current
stratocone configuration.

➢ Historic activity (1848 - today): Cyclic behavior of dome growth and
collapse, followed by vulcanian-to-Plinian eruptions until the Plinian
eruption of April 1993.

• Currently, there are no comprehensive models that explain the architecture
and dynamics of Láscar’s plumbing system.

What magma dynamics lead to explosive 
events in Láscar?
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Apatite composition attests pre-eruptive 
compositions of magma, and their configuration 

is a response to re-equilibration from a mafic 
composition to an intermediate composition 

caused by mixing. 

Systematic Classification

Figure 3. Ternary classification of Láscar apatites. 
Structural formula calculations follow Ketcham (2015).

• Figure 5 (Left). Harker diagrams for major elements and stoichiometrically 
determined water-in-apatite. Calcium concentration [%wt] in the X-axis. 

• Figure 6 (Above). Harker diagrams for Cl- and S- in-apatite gathered through 
SHRIMP-RG. Strontium concentration [ppm] in the X-axis. 

Volatile Element Analysis via SHRIMP-RGMajor Element Analysis via EMP

• Figure 9. Crystal-melt 
crystallization temperatures 
(Putirka, 2008), Zircon 
saturation temperatures 
(Boehnke et al., 2013), and 
apatite saturation 
temperatures (Piccoli & 
Candela, 2002) for Láscar 
whole-rock samples. 

Sample
Avg. Melt H2O 

(calculated w/ Cl) 
[%wt]

Avg. Melt H2O 
(calculated w/ F) 

[%wt]

P01 3.34 5.67
P02 5.33 7.60
P03 4.21 7.63

P03A 2.07 3.90

Table 2. Water-in-melt estimations for Láscar samples. Model 
by Li & Costa (2020).


