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Project Site: Farnsworth Unit (FWU)

Balch et al. 2017

Agrium Fertilizer Plant

Arkalon Ethanol Plant

Carbon Dioxide (CO2) Supply

Southwest Regional Partnership(SWP) 
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Southwest Regional Partnership(SWP) 

– Farnsworth Unit –
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Field History

• Field discovered in October 1955

• Original oil in place ~120 million barrels

• Original gas in place ~ 41.48 Bscf

• Morrow B thickness ~ 0-18 m
• Porosity ~ 0.15

• Permeability ~ 48 mD

• Primary recovery by solution gas  ~  1955

• Secondary recovery by waterflood ~ 1964

• Tertiary recovery by CO2 flood ~  2010

• SWP partner in 2013 – focusing on geological characterization
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Research  Objectives

• To explore the feasibility of CO2 storage in an active enhanced oil recovery (EOR) operation by understanding

the behavior of CO2 injected at the site.

• Assessing the feasibility of large-scale CO2 sequestration in the FWU, our studies seek to answer the following

questions:

• How far and how quickly the injected CO2 migrate from its source?

• How is the injected CO2 partition among the formation water, petroleum, an immiscible gas phase, and

carbonate minerals?

• How is the mineralogy of the reservoir, and the reservoir’s hydraulic properties change?

Our research employs numerical reactive solute, heat, and multi-phase fluid transport modeling at multiple

spatial scales, and laboratory experiments designed to track changes in reservoir mineralogy and formation

water chemistry as a result of chemical reaction with CO2 in order to answer the above questions



Performance & comparison of the 

numerical simulators, TOUGHREACT, 

GEM, and STOMP-EOR on a five-spot 

well pattern in the FWU

Field-scale numerical reactive 

transport simulations of CO2 injection 

in the FWU

Laboratory batch reaction experiments 

of the reaction of CO2-saturated 

Morrow B formation water with the 

Morrow B Sandstone matrix

Research Divisions

Part 1 Part 2 Part 3 

Each of the three parts in the research coincides with a key deliverable in the

grant from the U.S. Department of Energy that is funding the project.
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Modeling Workflow – Part I

A. Model Design and Data 

o ¼ -5 spot design (2010 – 3010) 13-10A

o Initial Morrow B pore water composition 

o Initial mineral volume fractions

o Initial pressure and temperature distributions

o Multi-phase fluid flow, heat transport, reactive solute transport

B. Model Scenarios

o Scenario 1 (Saline Aquifer Model) – Two fluid phase system

o Scenario 2 (Hydrocarbon Reservoir Model) – Three fluid phase system

Model spatial domains for present study



Results – Part I

Model Scenario 1

o Significant difference in pressure evolution 

o 25, 100, 1000 years

o Similar pattern of pressure distribution in 

Scenario 2

Pressure – STOMP Pressure –TOUGHREACT Pressure – GEM
(a) (b) (c)

25 years

100 years 100 years 100 years

1000 years 1000 years 1000 years

25 years25 years
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Results – Part I

Model Scenario 1

o Differences in immiscible CO2 predicted is a 

function of the different CO2 solubility functions 

that they employ

o Sharp initial drop in pH for the models

o Similar pattern Scenario 2 – except CO2 in oil 

phase
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TOUGHREACT

GEM

STOMP
Gas Saturation

25 years 100 years 600 years 1000 years
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Results  - Model Scenario 1 & 2

A B

1
2

3

Dissolution (25 yrs.) Dissolution (1000 yrs.) 

Precipitation (25 yrs.) Precipitation (1000 yrs.) 
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CO2 Distribution and Storage

Three-phase 

system

Two-phase fluid 

System



Modeling Workflow – Part II

• Baseline Model

• Encompasses field collected data (2010 – 2018)

• Parametrizations through Sensitivity Studies:

• Critical saturation endpoints

• Permeabilities

• Corey parameters

• History Match Tertiary Flood

• CO2-WAG (2010-2018)

• Prediction Studies

• 25 years of field operations

• 1000 years geochemical effects 

Define all field parameters

Specify Objective Functions

Select Initial Control Parameters and values

Run and Evaluate Best/Worst Cases (Sensitivity studies)

Update Model Parameters 

values

Field Certain Parameters

Run Model. Evaluate Mismatch (Observed -Calculated)

Errors 

Minimized

?

Calibrated Model

Yes

No

Forecast Field Behavior
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Results - Intensive 

Property Evolution

o We saw similar change in 

temperature

o Sharp decrease near wellbore, but 

slightly higher temperature towards 

highly impacted CO2 region

Temperature Pressure

o High pressure near wellbore

o Reservoir pressure decreasing to 

initial pressure over time



Results 

Model Predictions

14

o Field show case the timeline 

of each injector

o Sharp initial drop in pH for the 

models

o System pressure above MMP

o Gas fraction of CO2 decrease 

overtime
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Tracking Mineral Change

A B
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Primary Mineral 

Change 

o Calcite dissolution is gradual 

o Continuous increase in dissolution 

o Mostly in later part of the 

forecast
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Secondary Mineral 

Changes

o Siderite and Ankerite show 

showed similar pattern

Ankerite
Magnesite DolomiteSiderite

Ankerite/Siderite/Magnesite

o Magnesite precipitation at 

late years

o Dolomite major form of CO2

storage



18Sample locations

Corroborate the mineral evolution predicted by 
the numerical models in Parts I and II

Fulfilling Grants 
Subtask

Understand

Geo-Chemo 
physical changes

Part III

Objectives



scanning electron microscope (SEM) Analysis

Batch Reaction and 

Observations – 61 days

o Reaction vessels and heat chamber

o Fluid analysis with ICP-AES 

o Deposited particles on thin section – SEM 

ICP-AES Analysis of the Elemental Composition of the Morrow B Formation Water

High C 

1310A7669.1a

Low C 

1310A.7669.1b

C

C o

oMg Al CaSi

Mg Al CaSi

ESCL # UMC ID Elements

Concentrations (ppm)

Initial Conc.
Experiment 1

High Carbon Low Carbon

11215 Well 20-02

S 7.76 8.45 8.4

Ca 42.3 4.1 3.5

K 12 37.3 45.2

Na 1955 2550 2540

Mg 26.2 < 0.1 0.2

Fe < 0.4 < 0.4 < 0.4

Li 0.591 0.565 0.537

Sr 8.38 0.115 0.052

Ba 6.75 0.25 0.21

Al 0.226 < 0.13 < 0.13

pH 8.33 10.19 10.15



Low C Low C High C High C 

Thin 

Sections 

Observations 

– 61 days

o Less amount of calcite in High C modal 

analysis

o Rapid precipitation of calcite in Low C 

vessel thin section

o Dolomite significantly change from the 

initial modal analysis
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Observations - Summary

❑ Modeling results:

➢ The different models and codes yield some broadly similar results

➢ Most of the injected CO2 goes into the oil phase with successively smaller amounts into water, carbonate

mineral, and immiscible gas phases

➢ The long-term immiscible CO2 gas phase will decrease as the other forms of storage increase

➢ For the major native reservoir minerals, quartz is predicted to precipitate, and albite, calcite, and chlorite

dissolve

➢ Dolomite is the main mineral sink for the CO2 in the FWU and increased in abundance over time

➢ Changes in mineral abundances cause very small decreases in porosity

➢ Predicted changes in reservoir pressure and immiscible gas abundance are too small to pose storage

safety risks

❑ Experimental results:

➢ Dolomite and silica are the main precipitated phases, consistent with numerical modeling results
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