Investigating the CO₂ sequestration potential of the Morrow-B Sandstone in the Farnsworth, Texas hydrocarbon field through numerical models and experimental analysis

Author: Kutsienyo Eusebius J., Martin Appold, Mark White, William Ampomah

Subsurface Modeling and Simulation Laboratory

Department of Geological Sciences

October 11, 2022

Project Site: Farnsworth Unit (FWU)

Carbon Dioxide (CO₂) Supply

Field History

- Field discovered in October 1955
 - Original oil in place ~120 million barrels
 - Original gas in place ~ 41.48 Bscf
- Morrow B thickness ~ 0-18 m
 - Porosity ~ 0.15
 - Permeability ~ 48 mD
- Primary recovery by solution gas ~ 1955
- Secondary recovery by waterflood ~ 1964
- Tertiary recovery by CO₂ flood ~ 2010
 - SWP partner in 2013 focusing on geological characterization

Research Objectives

- To explore the feasibility of CO₂ storage in an active enhanced oil recovery (EOR) operation by understanding the behavior of CO₂ injected at the site.
- Assessing the feasibility of large-scale CO₂ sequestration in the FWU, our studies seek to answer the following questions:
 - How far and how quickly the injected CO₂ migrate from its source?
 - How is the injected CO₂ partition among the formation water, petroleum, an immiscible gas phase, and carbonate minerals?
 - How is the mineralogy of the reservoir, and the reservoir's hydraulic properties change?

Our research employs **numerical reactive solute**, **heat**, and **multi-phase fluid transport** modeling at multiple spatial scales, and **laboratory experiments** designed to track changes in reservoir mineralogy and formation water chemistry as a result of chemical reaction with CO_2 in order to answer the above questions

Research Divisions

Part 1

Part 2

Performance & comparison of the numerical simulators, TOUGHREACT, GEM, and STOMP-EOR on a five-spot well pattern in the FWU

Field-scale numerical reactive transport simulations of CO_2 injection in the FWU

Part 3

Layer 4, 5

Laboratory batch reaction experiments of the reaction of CO₂-saturated Morrow B formation water with the Morrow B Sandstone matrix

Each of the three parts in the research coincides with a key deliverable in the grant from the U.S. Department of Energy that is funding the project.

Modeling Workflow – Part I

Model spatial domains for present study

A. Model Design and Data

- ¼ -5 spot design (2010 3010) 13-10A
- o Initial Morrow B pore water composition
- o Initial mineral volume fractions
- o Initial pressure and temperature distributions
- Multi-phase fluid flow, heat transport, reactive solute transport

B. Model Scenarios

- Scenario 1 (Saline Aquifer Model) Two fluid phase system
- Scenario 2 (Hydrocarbon Reservoir Model) Three fluid phase system

7

Results – Part I Model Scenario 1

- Significant difference in pressure evolution
 25, 100, 1000 years
- Similar pattern of pressure distribution in Scenario 2

Results – Part I Model Scenario 1

- Differences in immiscible CO₂ predicted is a function of the different CO₂ solubility functions that they employ
- Sharp initial drop in pH for the models
- Similar pattern Scenario 2 except CO₂ in oil phase

Results - Model Scenario 1 & 2

А

B

Quartz

Albite

Clinochlore

llite

Montmor-Ca

Kaolinite

CO₂ Distribution and Storage

Modeling Workflow – Part II

- Baseline Model
 - Encompasses field collected data (2010 2018)
- Parametrizations through Sensitivity Studies:

Farnsworth Unit

CO₂ Injecto

- Critical saturation endpoints
- Permeabilities
- Corey parameters
- History Match Tertiary Flood
 - CO₂-WAG (2010-2018)
- Prediction Studies
 - 25 years of field operations
 - 1000 years geochemical effects

Calibrated Model Workflow

Results - Intensive Property Evolution

- We saw similar change in temperature
- Sharp decrease near wellbore, but slightly higher temperature towards highly impacted CO₂ region
- $\circ~$ High pressure near wellbore
- Reservoir pressure decreasing to initial pressure over time

13

Results Model Predictions

- Field show case the timeline of each injector
- Sharp initial drop in pH for the models
- $\circ~$ System pressure above MMP
- Gas fraction of CO₂ decrease overtime

Tracking Mineral Change

Α

Primary Mineral Change

- $\circ~$ Calcite dissolution is gradual
- Continuous increase in dissolution
 Mostly in later part of the forecast

Secondary Mineral Changes

- Siderite and Ankerite show showed similar pattern
- Magnesite precipitation at late years
- Dolomite major form of CO₂ storage

Ankerite/Siderite/Magnesite

Sample locations

Batch Reaction and Observations – 61 days

- Reaction vessels and heat chamber
- Fluid analysis with ICP-AES
- Deposited particles on thin section SEM

ICP-AES Analysis of the Elemental Composition of the Morrow B Formation Water

ESCL #	UMC ID	Elements	Concentrations (ppm)		
			Initial Conc.	Experiment 1	
				High Carbon	Low Carbon
11215	Well 20-02	S	7.76	8.45	8.4
		Ca	42.3	4.1	3.5
		K	12	37.3	45.2
		Na	1955	2550	2540
		Mg	26.2	< 0.1	0.2
		Fe	< 0.4	< 0.4	< 0.4
		Li	0.591	0.565	0.537
		Sr	8.38	0.115	0.052
		Ba	6.75	0.25	0.21
		Al	0.226	< 0.13	< 0.13
		pН	8.33	10.19	10.15

scanning electron microscope (SEM) Analysis

Thin Sections Observations – 61 days

- Less amount of calcite in High C modal analysis
- Rapid precipitation of calcite in Low C vessel thin section
- Dolomite significantly change from the initial modal analysis

Observations - Summary

- □ Modeling results:
 - The different models and codes yield some broadly similar results
 - Most of the injected CO₂ goes into the oil phase with successively smaller amounts into water, carbonate mineral, and immiscible gas phases
 - > The long-term immiscible CO_2 gas phase will decrease as the other forms of storage increase
 - For the major native reservoir minerals, quartz is predicted to precipitate, and albite, calcite, and chlorite dissolve
 - \blacktriangleright Dolomite is the main mineral sink for the CO₂ in the FWU and increased in abundance over time
 - Changes in mineral abundances cause very small decreases in porosity
 - Predicted changes in reservoir pressure and immiscible gas abundance are too small to pose storage safety risks
- Experimental results:
 - Dolomite and silica are the main precipitated phases, consistent with numerical modeling results

Acknowledgements / Thank You / Questions

Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) through the Southwest Regional Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591.

SOUTHWEST PARTNERSHIP U.S. DEPARTMENT OF ENERGY National Energy Technology Laboratory

