

1. Premise

The Eocene Grizzly Peak caldera in the northern Sawatch Range is hypothesized to have followed a single cycle of the resurgent cauldron model¹ on the basis of field work and geochemical analyses²

Panels modified after Smith and Bailey¹ to

of Grizzly Peak caldera². No scale is implied.

schematically show hypothesized development

Stage I. Precaldera diking and ring fractures owing to tumescence over a growing magma chamber

Stages II–III. Eruption of 600 km³ Grizzly Peak Tuff as a single cooling unit. Caldera collapse along inner and outer ring fault zones yielding 17x23 km caldera (230 km²). Up to 3.5 km subsidence in deeper northern ring fault zone. Giant megabreccia lenses dominate the NE caldera. Two vestiges of outflow tuff are proposed.

Stage V. A resurgent laccolith, comprising two mapped plutons intruded successively, causes doming in the northern part of the caldera.

Stage VIIa. Late-resurgent magmas intrude ring fracture zones. Hydrothermal alteration, weak stockwork (Mo) mineralization. Interpreted as last gasp of Grizzly Peak magma.

Stage VIIb. Bimodal post-resurgent magmas intrude caldera center. Carries boulders of coarse granite interpreted as solidified Grizzly Peak magma. Intepreted as new magma source.

Previous K-Ar geochronology (2σ uncertainties) was largely ignored because it did not support field interpretations^{2,3}. Later ⁴⁰Ar/³⁹Ar sanidine ages of intracaldera Grizzly Peak Tuff refined the eruption age to 34.3 ± 0.3 Ma⁴. Figure modified after Fridrich et al.²

2. New high-precision geochronology

Precaldera units

Twf dike LA-ICP-MS

66.42 ± 0.37

Sampled precaldera dike (Twf) is Cretaceous

- •Petrographic, sparse geochemical, or spatial correlations are nonunique
- Middle Mtn. porphyry Mo deposit (Twf) also cannot be related to Grizzly Peak magmatism as indicated by recent CA-TIMS zircon U-Pb (36.449 ± 0.048 Ma)⁵ and radiogenic isotopic data⁶

New CA-TIMS and LA-ICP-MS zircon U-Pb geochronology of the Grizzly Peak magmatic center, CO: confounding chronology of a classic caldera

Ryan E. Frazer¹, A. Kate Souders², Amy K. Gilmer¹, Ren A. Thompson¹, Drew S. Coleman³ ¹U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO ²U.S. Geological Survey, Geology, Geophysics, and Geochemistry Science Center, Denver, CO ³Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC

Grizzly Peak Tuff

•CA-TIMS data for two tuff subunits are distinguishable outside 2σ uncertainty Suggests multiple successive magma pulses; longer assembly for lower subunit? •Reevaluation of field evidence suggests possible cooling breaks in tuff, permitting the possibility of multiple eruptions

This work is part of the USGS Geologic Framework of the Intermountain West project. It is supported by the USGS Mendenhall Postdoctoral Fellowship Program and the USGS National Cooperative Geologic Mapping Program. Thanks to Josh Rosera, Sean Gaynor, and Ryan Mills for discussions. This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

- . Late Cretaceous-Tertiary magmatism in the Colorado Mineral Belt: Rare earth element and samarium-neodymium isotopic studies, in Anderson, J.L. ed., Memoir of the Geological Society of America. Geological Society of America Memoi 174, v. 174, p. 195–224.

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Resurgent plutons Resurgent pluton **Resurgent pluton 2 CA-TIMS** 36.5 37.0 LA-ICP-MS 36.19 ± 0.28 37.5 34.840 35.133 34.776 34.907 380° 0.049 0.068 0.031 0.074

•CA-TIMS and LA-ICP-MS data for resurgent plutons #1 and #2 are distinct •Resurgent pluton #2 contradicts field interpretations; predates tuff and pluton #1 • Resurgent pluton #2 has similar isotopic composition to tuff⁶; its age of 35.133 ± 0.068 Ma makes it the earliest instance of Grizzly Peak magmatism

•CA-TIMS data for youngest post-resurgent dike overlap both tuff CA-TIMS ages Samples double-dated by both LA-ICP-MS and CA-TIMS indicate Pb-loss

•Magmatic lifespan of Grizzly Peak system may have been <0.5 Ma

• Granitic xenoliths in post-resurgent pluton cannot be related to Grizzly Peak magmatism owing to age and isotopic characteristics⁶

3. Discussion and other data

•New geochronologic data condradict previous interpretations of the evolution and expression of magmatism at the Grizzly Peak caldera

• Grizzly Peak magmatism did not follow resurgent cauldron cycle¹. Plutonism preceded and overlapped tuff eruption, similar to the Mount Aetna caldera

•New age and isotopic data do not support previously proposed outflow tuff

• Perhaps Grizzly Peak caldera was deep but limited in area. Tuff in west (and south?) parts of field area could represent outflow from smaller caldera⁷

• Future isotope (Sr, Nd, Pb, Hf) and electron microprobe work will further test relationships between Grizzly Peak Tuff and post-resurgent units

Acknowledgments, Disclaimer, References

Structural, eruptive, and intrusive evolution of the Grizzly Peak caldera, Sawatch Range, Colorado: Geological Society of America Bulletin, v. 103, p. 1160–1177

awatch Range, central Colorado: U.S. Geological Survey Miscellaneous Investigations Series Map I-2565. eochronology of the central Colorado volcanic field: New Mexico Bureau of Geology & Mineral Resources, Bulletin, v. 160, p. 205-237 Spatio-Temporal Shifts in Magmatism and Mineralization in Northern Colorado Beginning in the Late Eocene: Economic Geology, doi:10.5382/econgeo.4815.