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Weigh 14.0-14.5 mg for analysis using an elemental 
analyzer isotope ratio mass spectrometer (EA-IRMS)

Dry the samples in oven for 48 hours at 60℃

Remove organic carbon through chemical oxidation for 
12 days, 55℃ (potassium dichromate/sulfuric acid, 0.5 M 

K2Cr2O7/  2M H2SO4)

Remove carbonates & silicates through acid digestion 
1.6M HCL, 20 hours, 60℃ 

2.6M HCl+ 22M HF, 20 hours, 60℃
3.6M HCl, 20 hours, 60℃

Weigh ≈ 2.0 grams of sample

Methods

Mean annual precipitation (MAP) equations (Chen et al., 2020):  

Δ!"#$ = (𝛿13𝐶𝑎𝑡𝑚− 𝛿13𝐶𝑙𝑒𝑎𝑓)
1+ 𝛿13𝐶𝑙𝑒𝑎𝑓/1000 Δ!"#$= 5.37(⼠0.30) x log10(MAP) + 5.06(⼠1.00)
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• The Paleocene-Eocene Thermal Maximum 
(PETM, ca. 56Ma) was characterized by a rapid 
increase in global temperatures and carbon cycle 
perturbation.

• Wildfires were common during the PETM, 
which may have contributed to the total amount 
of emitted carbon into the atmosphere. 

• One byproduct of these wildfires is black carbon 
(BC), which is incomplete burned organic 
matter. 

• We focus on the black carbon and its carbon 
isotopes preserved at the newly discovered 
Kuzigongsu section in the Tarim Basin of the 
eastern Tethys.

• Our objective is to reconstruct terrestrial 
paleoenvironment using the occurrence and 
isotopes of BC, which can further determine 
how vegetation and regional precipitation 
responded to the PETM.
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Figure 2: The PETM starts at 19.9 m and ends at 30.5 m. 
Note the shift in geochemistry during the PETM (Jiang et 

al., in prep).  

Figure 1: Modern-day location of the Kuzigonsu site
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Figure 4: A frequency plot of the δ13CBC results. The data 
shows -23 ‰ and -24 ‰ are the most commonly observed

values, which falls within the range of gymnosperms.

Figure 5: The δ13CBC  distribution. Average values are -24 
‰ for gymnosperms and -27 ‰ for angiosperms, 

respectively. Black carbon results suggest this could be a 
transition from gymnosperms to angiosperms. 

Figure 6: Scanning electron microscope (SEM) image of 
black carbon, with the green color denoting elemental carbon 
abundance. The graph to the right is an energy dispersive x-
ray spectroscopy (EDS) spectrum of the elements found in 

the image to the left. 
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Figure 3: The blue line represents bulk carbonates from the 
Kuzigongsu section. The red circles represent δ13CBC. The x-
axis represents time. Zero represents the start of the PETM, 

negative values represent time before the PETM, and 
positive values portray time after the PETM.
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• Prior to the PETM, the climate in the eastern 
Tethys was semi-arid, which likely led to frequent 
wildfires.

• Using the equations shown in Methods, we find 
the MAP increased from ~1,100 mm (before the 
PETM) to ~2,300 mm (during the PETM), which 
may have caused a larger decrease in δ13CBC
values compared to the δ13Ccarb values. Vegetation 
shift from gymnosperms to angiosperms may also 
have played a role.

• During wet seasons, angiosperm biomass likely 
increased, potentially becoming fuel for wildfires 
in the dry season (Chen et al., 2020).

• Increased humidity may  decrease the wildfire 
frequency, but higher pCO2 and warmer 
conditions can create lighting-induced wildfires. 

• BC could have then been transported to the 
eastern Tethys through runoff  following wet 
season. 

Discussion

Conclusions
• The eastern Tethys was a semi-arid environment 

that could have been prone to wildfires in the late 
Paleocene.

• The PETM changed the hydrologic cycle, 
delivering more precipitation to the region, 
potentially causing a vegetation shift. 

• Our work can be applied to investigate BC in 
other paleo applications and infer how modern-
day vegetation could respond to shifts in climate. 

Future Work
• We plan to finish collecting the rest of the isotope 

data and are currently looking for more BC using 
SEM. 

Conclusions and Future Work
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