Paper No. 6-1
Presentation Time: 8:30 AM
THE ROLE OF CHEMISTRY IN FRACTURE PATTERN DEVELOPMENT
Fracture patterns in rock strongly affect directions, magnitudes, and heterogeneities of both fluid flow and rock strength. Accurate and testable predictions of patterns are essential for understanding many societally important processes in the Earth and for effectively managing subsurface engineering operations. Chemical processes play a larger role in opening-mode fracture pattern development than has hitherto been appreciated. For fractures formed at depths of ~1–10 km and temperatures of 50–200 °C, new evidence shows chemical reactions are common and more diverse than previously recognized. We describe how viewing fracture formation and evolution from a chemical perspective helps to solve problems in fracture pattern analysis. We outline the main impediments to subsurface fracture pattern measurement and interpretation, assess implications of recent discoveries in fracture history reconstruction for process-based models of fracture and cement accumulation, review models of fracture cementation and chemically assisted fracture growth, and discuss promising paths for future work. Potential exists for basic scientific investigations to lead to progress on what has been one of the most refractory practical problems in subsurface science. Results suggest that progress in fracture interpretation and prediction can be made using observational, experimental, modeling, and theoretical approaches that view fracture patterns as the result of coupled mechanical and chemical processes.
© Copyright 2022 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.
Back to: Thursday AM Talks
Previous Abstract
|
Next Abstract >>