A multidisciplinary construction of the 3D thermo-rheological structure in California and Nevada

Implications on the transtensional deformation along the active margin

Thermal architecture: a fundamental control on crustal properties

Exerts a first-order control on continental deformation

- **Seismicity (seismogenic thickness)**
- **Crustal flow (ductile strength)**
- Controls the evolution of orogens
	- **Temperature-dependent rheology** (Wolf et al., 2022 *Nature*)

▪ **Deformation**

 (Meltzer et al., 1998 *EOS*) (Yang et al., 2023 *Tectonics)* (Vlaha et al., 2024 *Nature communication)*

▪ **Metamorphism**

(Brown, 1993 *Journal of the Geological Society)*

Mid-lower crustal temperature uncertainty

Common approach on estimating crustal temperature relies solely on **surface heat flow (***q^s* **)** observations

Thatcher and Chapman (2020 *SCEC)* Shinevar et al. (2018 *EPSL)*

$$
q_s \propto \frac{dT}{dz}
$$

Mid-lower crustal temperature uncertainty

Common approach on estimating crustal temperature as a function of depth relies solely on **surface heat flow (***q^s* **)** observations

$$
q_s \propto \frac{a_1}{dz}
$$

 \overline{dT}

Thermal profile only constrains by **surface heat flow is not sufficient**

■ Over/underestimates deep crustal temperature and rheology

Multi-parameter 3D thermal model

Multi-depth-level temperature constraints:

Surface heat flow

Mordensky and DeAngelo, 2023 *USGS*

200 km

New seismogenic thickness (D95) model

95th percentile of the hypocentral distribution **(D95)** captures the seismogenic thickness

Depth (km)

▪ **D95 ≈ BDT ≈ 350 ± 50 °C**

Merged >40 years of earthquake records from:

- 1984-2024 Northern California (Waldhauser and Schaff, 2008; Waldhauser, 2009)
- 1981-2023 Southern California (Hauksson et al., 2012)
- 1980-2024 Nevada (Trugman, 2024)

Modified from Zuza and Cao (2020 *Tectonophysics*)

Adaptively sized seismogenic thickness (D95) model

Moho conditions

Crustal thickness estimate is acquired from P_n tomography (Buehler and Shearer, 2017) and Moho temperature is calculated as a function of P_n velocity assuming homogenous composition (Schutt et al., 2018).

Buehler and Shearer (2017 JGR SE) *Buehler* and Shearer (2017 JGR SE)

Crustal temperature modeling: Monte-Carlo type simulation

- 100,000 iterations of 1D steady-state heat conduction calculation per bin
- Randomize *T***⁰** *, q***m***, k, h, H***⁰** per iteration
- Seeks good-fit results compared to the D95 and Moho conditions
	- Normalized root mean square error (NRMSE)

Thermal modeling parameters

Turcotte and Schubert (2014)

Crustal temperature modeling: Monte-Carlo type simulation

Good-fit profiles (Red)

■ NRMSE coefficient <0.35

Moderate-fit profiles (Black)

■ NRMSE coefficient <0.55

Final best-fit profile (Purple)

■ Mean of all best-fit profiles

Thermal structure of California and Nevada

***Transparent results are constructed without D95 constraint**

Elevated thermal gradient regions (>30 °C km-1):

▪ **Salton Trough, Coso, Clear Lake, Central Nevada Seismic Belt**

Low thermal gradient regions (<20 °C km-1):

E Sierra Nevada, Mojave, Great Valley, northeastern Great Basin

Thermal structure of California and Nevada

***Transparent results are constructed without D95 constraint**

Elevated thermal gradient regions (>30 °C km-1):

E. Salton Trough, Coso, Clear Lake, Central Nevada Seismic Belt

Low thermal gradient regions (<20 °C km-1):

▪ **Sierra Nevada, Mojave, Great Valley, northeastern Great Basin**

Thermal structure of California and Nevada

- > 800 °C for the bottom 7 km of the crust
- **Exceeds the granite solidus**
- Active partial melting/magma body?

***Transparent results are constructed without D95 constraint**

Extract crustal rheology

Quartzite flow law: Hirth et al. (2001 *International Journal of Earth Sciences)*

Anorthite flow law: Rybacki et al. (2006 *JGR SE)*

Strain rate: Kreemer et al. (2012 *EGU)*

$$
\dot{\varepsilon} = Af_{H_2O}^r \sigma^n \exp\left(-\frac{Q + PV_a}{RT}\right)
$$

Rheology of California and Nevada

***Transparent results are constructed without D95 constraint** Wet quartzite dislocation creep (Hirth et al., 2001) **notheastern Great Basin**

Low viscosity (weak) regions (~19-20 Log Pa s):

■ San Andreas, Salton Trough, Clear Lake, Walker Lane

High viscosity (strong) regions (>21 Log Pa s):

E Sierra Nevada, Mojave, Great Valley,

Application to active tectonics: seismicity and faulting

Seismogenic thickness α **Fault density⁻¹**

 dT $\frac{dz}{z}$ α Fault density

- Hot thermal gradient promotes faulting
- **Faulting advects heat**
- Viscosity α Fault density⁻¹
	- Weak crust promotes faulting
	- Faulting weakens crustal strength

Application to active tectonics: seismicity and faulting

Application to active tectonics: seismicity and faulting

Seismogenic thickness α Fault density⁻¹

 dT $\frac{dz}{z}$ α Fault density

- Hot thermal gradient promotes faulting
- **Faulting advects heat**

Viscosity Fault density-1

- **Weak crust promotes faulting**
- **Faulting weakens crustal strength**

Application to active orogen: low-T thermochronology

Couples low-T thermochronometers with upper

(Baden et al., 2023 *GSA Bulletin*)

(Reiners and Brandon, 2006 *Annual Review of Earth*

60

 \cdot dT/dz = 35 °C km⁻¹

- dT/dz = 20 $^{\circ}$ C km⁻¹

40

20

Application to active orogen: low-T thermochronology

Couples low-T thermochronometers with upper

(Baden et al., 2023 *GSA Bulletin*)

(Reiners and Brandon, 2006 *Annual Review of Earth*

60

 \cdot dT/dz = 35 °C km⁻¹

- dT/dz = 20 $^{\circ}$ C km⁻¹

40

20

An analog for the thermal structure of active and ancient orogens

Terry Lee (terrywaihol@unr.edu)

Andrew V. Zuza Daniel T. Trugman Dominik R. Vlaha Wenrong Cao

This model will be open-sourced and could allow users to apply to other tectonic regions (e.g., Himalayas-Tibet, Anatolian fault zone, Alps)

Cautious evaluation of crustal thermal structure can provide insights into the evolution of active and ancient orogens

Thermal structure governs **deformation and rheology**

This modeling approach may improve the **rigorousness of exhumation and erosion rate estimations**