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Introduction
North American Cordilleran metemorphic core complexes (MCCs) expose 
metamorphosed infrastructure (lower plate) which is juxtaposed against the 
brittlely deformed suprastructure (upper plate). These two structural domains 
are seperated by a high-strain mylonitic shear zone. The evolution of 
mylonitic shear zones is highly debated. In addition, Mesozoic-Cenozoic 
inherited sturctures within the infrastructure may also affect the architecture 
of MCCs in the North American Cordillera.

Here, we apply detailed field observations and apatite U-Pb petrochronology 
coupled with EBSD mircostructure to directly constrain the timing, 
kinematics, and conditions of ductile deformation within the mylonitic shear 
zone and migmatitic infrastructure. We applied this approach to Ruby 
Mountains-East Humboldt Range (REHR), Chemehuevi, and 
Catalina-Rincon MCCs, which in turn, places age constraints on the 
Mesozoic-Cenozoic evolution of North American Cordilleran MCCs.

▪ Large-magnitude regional extension (>~100% extension; Wernicke, 1981; 
Davis, 1983) is accommodated by detachment faulting and its down-dip 
continuation of ductile shearing

▪ Mylonitic shear zone shares the same kinematics and is coeval with 
detachment fault (Wernicke, 1981; Davis, 1983)

▪ Hanging wall removal leads to isostatic exhumation (Wernicke and Axen, 
1988 Geology)

▪ Hanging wall receives syn-kinematic sediments from the unroofing footwall 
(Yin and Dunn, 1992 GSAB)**

▪ Detachment captures preexisting mid-crustal shear zone (e.g., mylonitic front; 
Davis, 1988 Geologische Rundschau)

▪ Mylonitic fabrics at the mylonitic front departs away from the detachment
▪ Mylonitic shear zone is kinematically decoupled from the detachment
▪ Timing of mylonitic shearing can be coeval or older than detachment faulting

▪ Crustal heating and melting drives density instability, and emplacement of a 
buoyant diapir in the mid-crust (t = 0; Konstantinou et al., 2012 Geosphere)

▪ Charaterized by syn-diapir leucrogranite intrusion and primarily 
pure-shear strain at the wall-rock shear zone (Zuza et al., 2024 EPSL)

▪ Minor (?) syn-diapir sedimentation due to dynamic topography (t = 0)
▪ Detachment fault exhumes the preexisting mid-crust diapir to the surface
▪ Requires wall-rock mylonite to predate detachment faulting

(1) What are the deformation age distributions across the mylonite zone into the infrastructure?

(2) Are the mylonitic fabrics temporally decoupled from regional extension and detachment faulting?

(3) Does the infrastructure record mid-crustal deformation during Mesozoic contractional tectonics?

(4) Can apatite U-Pb petrochronology coupled with CVA analysis provide direct constraints on ductile
      deformation ages?

▪ Apatite U-Pb ages yield Early Miocene ages, which is similar to the 40Ar/39Ar mica dates in the northern Ruby Mountains 
(Dallmeyer et al., 1986 Tectonics)

▪ Apatite U-Pb ages likely represent thermochronologic dates (Apatite Tc ≈ 350-570°C; Chew and Sikings, 2021 Minerals)
▪ Zircon U-Pb ages yield late Oligocene crystallization ages, consistent with extensive leucogranite intrusions in REHR

Key qestions

▪ Inverted contacts support km-scale recumbent folding in the central Ruby Mountains, but prelimianry field observations 
suggest that equivalent units are less strained compared to the northern Ruby Mountains-East Humboldt Range

▪ Zircon U-Pb geochronology will be conducted for the central Ruby Mountains leucrogranite complex in Fall 2024 to 
understand the intrusion history and to constrain the deformation timing at the transition zone

▪ Undeformed apatite U-Pb ages are consistent with existing Early Miocene 40Ar/39Ar mica cooling dates, thus we 
intrepret it as a thermochronologic date
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Photo 1: Inverted stratigraphy with Cambrian–Proterozoic 
Prospect Mountains quartzite (ꞒZpm) overlays on top of 
Cambrain–Ordovician marble (OꞒm). 

Photo 3: Inverted stratigraphy with Cambrain–Proterozoic 
McCoy Creek schist (ꞒZms) overlays ꞒZpm.

Photo 2: Weakly foliated and folded ꞒZpm at the upper limb 
of King Peak nappe.

Photo 4: Upright, north-plunging fold train between 
Jurassic–Cretaceous leucogranite (JKlg) and ꞒZms near the 
suprastructure transition.
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Field observations of the infrastructure-suprastructure transition 

Elko

Wells

Carlin

10 km

41º

40º

116º 115º

East 
Humboldt 
Range

East 
Humboldt 
Range

Ru
by

 M
ou

nt
ai

ns

Ru
by

 M
ou

nt
ai

ns

Quaternary sediments
Miocene Humboldt Formation

Eocene Elko Formation
Eocene igneous rocks

Mesozoic strata

Neoproterozoic-Paleozoic 
unmetamorphosed strata
Proterozoic-Paleozoic
paragneiss and orthogneiss
Roberts Mountain allochton

Mylonite shear zone

Detachment fault

Major folds, including nappe
structures

Mesozoic pluton

Upper Paleozoic strata

Normal fault

A

A’

41º

115º116º

Infrastructure-
suprastructure 
transition

Infrastructure-
suprastructure 
transition Mapping 

Area
Mapping 

Area

Harrison
Pass
pluton

Harrison
Pass
pluton

Infrastructure
and mylonitic
shear zone
(below
suprastructure)

Infrastructure
and mylonitic
shear zone
(below
suprastructure)

Undeformed
suprastructure
(above 
infrastructure
and mylonitic
shear zone)

Undeformed
suprastructure
(above 
infrastructure
and mylonitic
shear zone)

Mylonitic 
shear zone

Migmatitic 
infrastructure

Lineations

Zuza et al., (2022)

▪ Proterozoic–Paleozoic sedimentary rocks are metamorphosed 
and intruded by Jurassic–Oligocene leucogranite (Howard et al., 
2011 Geosphere)

▪ West-flank is bounded by the late-Oligocene NW-directed 
mylonitic shear zone (Snoke, 1980 GSA Memoirs)

▪ Brittle normal-sense faulting initiated during mid-Miocene (Colgan 
et al., 2010 Tectonics)

▪ Infrastructure records possible Jurassic–Cretaceous contractional 
deformation (Hudec, 1992; McGrew et al., 2000 GSAB)

▪ Ongoing mapping at the transition zone (blue box) between the 
metamorphosed infrastructure and brittle suprastructure in the 
central Ruby Mountains 

Modified from Colgan et al. (2010)Modified from Howard et al. (1979 USGS)
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CVA vector

1 Field photos

1 Sample: AZ10-21-20(9)

Modified from Neumann (2000 Journal of 
Structural Geology)
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Oligocene–Miocene sedimentary rocks

Oligocene–Miocene volcanic rocks

Proterozoic–Cretaceous upper-plate rocks (above Catalina- San Pedro 
detachment)

Proterozoic–Eocene lower-plate rocks (below Catalina-San Pedro 
detachment; pattern indicates mylonitic fabrics)

Fault 

High-angle normal fault 

Low-angle normal fault 

Extensional detachment fault 

Mylonitic lineation

Sample AZ2-8-23(1)

Modified from Spencer et al. (2022 Geosphere)
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▪ Dislocation on apatite with LAB misorientation axis around <a> axis, suggests prism <c> slip
▪ Homogenous CL texture

▪ Deformed quartz with prism <a> slip, suggests deformation temeprature at ~500°C
▪ Subparalle CVAs between apatite and quartz, thus they share the same deformation kinematics
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LAB misorientation axisLAB misorientation axis
▪ LAB misorientation axis suggests dislocation arrays 

around <c> axis, implying deformation mechanism 
dominated by prism <a> slip

▪ Prism <a> slip in quartz suggests deformation 
condition at ~500°C

Apatite U-Pb agesApatite U-Pb ages

LAB misorientation axisLAB misorientation axis

▪ New EBSD mircrostructure constrains the mylonitization 
temperature to ~500°C (prism <a> slip in quartz)

▪ New apatite U-Pb petrochronology yields Late 
Cretaceous and middle Micoene ages

▪ Middle Miocene apatite U-Pb ages is slightly younger than 
the 40Ar/39Ar biotite cooling dates at ~20 Ma (Foster and John, 
1999)

▪ Our apatite U-Pb age populations record the timing of 
both Late Cretaceous ductile (contractional) shearing 
and Miocene ultramylonite formation

CVAsCVAs

▪ Quartz CVA vector is subparallel to the mean 
apatite CVA, signifying that they share identical 
deformation kinematics

60120300600

3000

6000

0 20 40 60 80 100
238U/206Pb

0.2

0.4

0.6

0.8

20
7 P

b/
20

6 P
b

1

0

14.5 ± 2.5 Ma (n = 31)
14.5 ± 2.5 Ma (n = 31)

61 ± 19 Ma (n = 47)

61 ± 19 Ma (n = 47)23-CM02
TL23-12-04(5)

QuartzQuartz

0.5

1

1.5

2

M
.U

.D
.

Mis2MeanMis2Mean
Deformed apatiteDeformed apatite

TL23-12-04(5): Garnet-biotite orthogneiss 

LAB misorientation axisLAB misorientation axis

aa

aa
cc

cc

Prism <c>
slip 

Prism <c>
slip 

Mean apatiteMean apatite
n = 6n = 6

▪ Misorientation map exhibits apatite grain size reduction and intragrain deformation
▪ Low-angle boundary (LAB) misorientation axis indicates dislocation around <a> axis, inferring prism <c> slip

aa

cc

cc

aa

Prism <a>
slip 

Prism <a>
slip 

Preliminary microstructure and apatite U-Pb petrochronology
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▪ Exposes Proterozoic basement orthogneiss and Cretaceous 
Chemehuevi Mountains plutonic suite (John, 1982)

▪ A  Cretaceous (?) shear zone with NE-trending lineation 
deforms the Proterozoic basement and the older member of 
Cretaceous pluton (John and Mukasa, 1990 JGR SE)

▪ Thin zones of ultramylonite overprint the inherited fabrics 
(John and Mukasa, 1990)

▪ Biotite and K-feldspar 40Ar/39Ar dates constrained Early 
Miocene detachment slips and generation of the localized 
ultramylonite (Foster and John, 1999 GSL) 25 km

▪ SW-directed shear zone mylonitized the Proterozoic 
Oracle and Cretaceous–Eocene Wilderness granite 
(Davis et al., 2019 GSA Field Guides)

▪ Shear zone at deeper structural levels exposes a 
conjugate, NE-directed shear zone (Molino Basin), 
which may be related to decompression flows 
(Spencer et al., 2022)

▪ Existing apatite U-Pb analysis on the Oracle and 
Wilderness granites yield Miocene ages (Davis et 
al., 2023 GSA Memoirs)

Quaternary and Paleogene–Neogene sedimentary rocks

Miocene–Oligocene volcanic and sedimentary rocks

Cretaceous undeformed Chemehuevi Mountains plutonic suite

Proterozoic and Cretaceous mylonitic gneiss

Proterozoic gneiss and granites
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Normal fault
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Mohave Wash fault
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Sample: TL23-12-04(5)

1

Preliminary apatite U-Pb petrochronology

Summary
▪ Deformed apatite from the Oracle-type granite and undeformed apatite from the Wilderness-type 

granite consistently yields late Cretaceous U-Pb ages
▪ Inconsistent with the existing Miocene ages from the Rincon Mountains (Davis et al., 2023)
▪ Do the new Cretaceous ages record the timing of Mesozoic contractional deformation?

Foliation

Lineation

▪ Crystallographic vorticity axis (CVA; Michels 
et al., 2015) calculates the rotational axis when 
the rock is under shear

▪ Identical CVAs between accessory phases 
(e.g., apatite, titanite) and fabric-forming phases 
(e.g., quartz) suggest they share the same 
deformation kinematics (Miranda et al., 2023 
Geology)

Key for the low-angle boundary 
(LAB) misorientation analysis
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