MODIFIED SESOIL MODEL FOR SIMULATING PFAS TRANSPORT IN THE VADOSE ZONE ROBERT ADAM SCHNEIKER September 23, 2024

SESOIL Vadose Zone

SEasonal SOIL model (1981)

Marcos Bounazountas Janet Wagner Arthur D. Little, Inc.

For the U.S. EPA Office of Toxic Substances

Used by state agencies to establish soil leaching standards protective of groundwater quality

SESOIL Hydrologic Cycle

Surface Water Runoff

Infiltration

SESOIL Hydrologic Cycle Report

Scenario Description: Benzene with default data SESOIL Output File: C:\SEATPRG7\BENZ01.OUT

Evapotranspiration

Soil Moisture

Groundwater Recharge

	Surface Water Runoff		Net Infiltration		-		Soil		Groundwater		Soil Moisture	
					Evapouranspiration		Retention		(Recharge)		Layer 1	Below Layer 1
Units	cm	Inches	cm	Inches	cm	Inches	cm	Inches	cm	Inches	Percent	Percent
October	0.00	0.00	5.52	2.17	2.59	1.02	-0.04	-0.02	2.97	1.17	4.95	4.95
November	0.00	0.00	5.27	2.07	0.71	0.28	0.58	0.23	3.98	1.57	5.65	5.65
December	0.00	0.00	0.11	0.04	0.30	0.12	-1.17	-0.46	0.97	0.38	4.25	4.25
January	0.00	0.00	0.10	0.04	0.30	0.12	-0.60	-0.24	0.41	0.16	3.53	3.53
February	0.00	0.00	0.13	0.05	0.30	0.12	-0.42	-0.17	0.24	0.09	3.03	3.03
March	0.00	0.00	5.47	2.15	1.65	0.65	1.60	0.63	2.22	0.87	4.95	4.95
April	0.00	0.00	7.28	2.87	3.83	1.51	0.17	0.07	3.28	1.29	5.15	5.15
May	0.00	0.00	8.04	3.17	4.43	1.74	-0.06	-0.02	3.68	1.45	5.08	5.08
June	0.00	0.00	9.24	3.64	4.81	1.89	0.04	0.02	4.39	1.73	5.13	5.13
July	0.00	0.00	8.55	3.37	4.41	1.74	-0.10	-0.04	4.24	1.67	5.00	5.00
August	0.00	0.00	10.30	4.06	4.87	1.92	0.25	0.10	5.17	2.04	5.30	5.30
September	0.00	0.00	8.62	3.39	4.03	1.59	0.00	0.00	4.59	1.81	5.30	5.30
Total	0.00	0.00	68.62	27.01	32.23	12.69	0.25	0.10	36.14	14.23		

SESOIL Pollutant Cycle

Mass Balance

Leachate **Concentration**

Migration Depth

SESOIL Pollutant Cycle Report

Scenario Description: Benzene with default data

SESOIL Output File: C:\SEATPRG7\BENZ01 OUT

		1		
SESOIL	Pollutant	Percent	Maximum leachate concentration: 3.421⊑ 0	1 m a/l
Process	Mass (µg)	of Total	Maximum leachate concentration. 3.42 [E-0	ing/i
Volatilized	3.206E+07	94,30		
In Soil Air	3.025E+01	0.00	Climate File: MADISON, DANE COUNTY AIRPO	DRT
Sur. Runoff	0.000E+00	0.00		
in Washid	0.000E+00	0.00	COSEATPRG/MADISON.CLM	
Ads On Soil	6 161E+01	l <u>ñ ññ</u>		
Hydrol Soil	0.000E+00	0.00	Chemical File: Benzene	
Degrad Soil	0.000E+00	0.00		
Duro Dhaeo	0.00000000	0.00	ÇOSEALPRGOBENZENE.CHM	
Complexed	0.000000000	0.00		
loompiezeu		0.00	Soil File: Sand , Perm = 1.00E-3 cm/sec	
		0.00		
In Soil Moi	0.000E+00	0.00	CISEALPRO/ SAND.SUL	
III SOI MOI	3.510E+01	0.00		
Hydrof Mors	U.UUUE+00	0.00	Application File: SEVIEW Default Application Paran	neters
Degrad more	S U.UUUE+UU	0.00		
Other Trans	U.UUUE+00	0.00		
other Sinks	U.UUUE+00	0.00	Starting Depth: 224.00 cm	
Gwr. Runoff	1.934E+06	5.69	Starting Depth. 324.90 Cm	
Total Output	t 3.399E+07	99.99	Ending Depth: 1000.00 cm	
Total Input	3.400E+07			
Input - Outp	ut 2.160E+03		Total Depth: 1000.00 cm	
			SESOIL Mass Fate Plot	VOL TO TAL
4.006	+ 0 7			IN SOIL AIR
3.50 E	+ 0.7			ADS ON SOIL
				IN SOIL MOI
2.006	··· 1			G ND W IN IOTAL
2.506	+ 0 7 -			
8				
E 1.000				
1.50 E	* * 7 - 1			
1.001				
5.006	· · · · ·			
0.001	a		10 20	
			Years	
			Leachate Concentration	
4.0	0 E-0 1 -			
3.5	, 0 2 - 0 1	- L		
j 3.0	0 E-0 1	- K		
Ē 2.5	50E-01 -	- D		
Ę,				
	02-01	-1		
8 <u></u> 1.5	50E-01 -		\	
8 1.0	0 E-0 1		1	
5.0	0 E-02			
0.0	02+00		E 10 1E	2.0
	•		Years '	20 20
			Contam Inant Denth Blot	
			Contain mant Depth Plot	
	0			20
	Ĩ	-		
-2 0				
-4.0	5			
.eo				
page -				
-8.0				
-0.0	5			
-100				

Years

PFAS in the Vadose Zone

- Adsorption of PFAS in the vadose zone is complex
- Can occur at the air-water interfacial areas
- Existing models may not be appropriate

Guo, B., Zeng, J., & Brusseau, M. L. (2020). A mathematical model for the release, transport, and retention of per- and polyfluoroalkyl substances (PFAS) in the vadose zone. Water Resources Research, 56.

PFAS leaching standards using SESOIL

Massachusetts Department of Environmental Protection

Maine Department of Environmental Protection

- SESOIL was modified to simulate the transport of PFAS in the vadose zone
- Suggested by Nihar Mohanty at the Mass DEP

New Hampshire Department of Environmental Services

PFAS concentration adsorbed at the air-water interfacial areas $C_{aw} = A_{aw} K_{aw} C^{\frac{1}{f_{aw}}}$

Parameter	Description
C	Contaminant concentration adsorbed at the air-water
Caw	interfacial areas (µg/g),
A_{aw}	Air-water interfacial areas (cm ² /cm ³),
K	Contaminant air-water interfacial adsorption
h aw	coefficient (cm^3/cm^2),
C	Contaminant concentration in soil water (µg/ml),
faw	Kaw Freundlich exponent.

Guo, B., J. Zeng, M. L. Brusseau, A mathematical model for the release, transport, and retention of per- and polyfluoroalkyl substances (PFAS) in the vadose zone. Water Resour. Res. 57, 2020.

Contaminant Migration Depth

$$D = \frac{\int_{w} t_c}{\theta + \rho_b K_d + A_{aw} K_{aw} + \frac{f_a H}{R(T + 273)}}$$

Parameter	Description
D	Contaminant depth (cm)
J_{W}	Water velocity (cm/s)
t_c	Advection time (s)
θ	Soil water content (cm ³ /cm ³)
$ ho_{\scriptscriptstyle b}$	Soil bulk density (g/cm ³)
K_d	Chemical distribution coefficient $(\mu g/g)/(\mu g/ml)$
K_{aw}	Air-water interfacial adsorption coefficient (cm ³ /cm ²)
f_a	$f - \theta$ = the air-filled porosity (ml/ml)
Н	Henry's law constant (m ³ atm/mol)
R	Gas constant [8.2 X 10 ⁻⁵ m ³ atm/(mol °K)]
Т	Soil temperature (°C)

Monthly Air-Water Interfacial Areas Values

Setup SESOIL and AT123D Runs									×
Climate	Chemical	Soil	Washload		Application		Source Size		AT123D
Column Ratios	Aaw Lay	er 1, Year 1	Layer 2, Year 1	Layer	3, Year 1	Layer 4, Yea	ır 1	Sublayer Load	Summers Model
Save As	Layer 1 (cm2/cm3)	Laver 2 (cm2/cm3)	Laver 3 (cm2/cm3)	Layer (cm2/cm	4				Open
Oct	0.0	0.0	0.0	(0.0				
Nov	0.0	0.0	0.0	().0 Est	imating Air-\\/	ator I	nterfacial Area Ma	athod
Dec	0.0	0.0	0.0	().0	amating Air-wa	ateri		
Jan	0.0	0.0	0.0	(0.0				
Feb	0.0	0.0	0.0	(0.0	GSSA			
Mar	0.0	0.0	0.0	(0.0	 AQITT 			
Apr	0.0	0.0	0.0	(0.0	 Corrected 	d AC	2ITT	
May	0.0	0.0	0.0	(D.O From	m Brusseau, M.L.,	2023,	Determining air-water in	terfacial areas for the
Jun	0.0	0.0	0.0	(0.0 rete	ention and transport aturated porous me	t of PF edia. S	AS and other interfacial Sci Total Environ. 163730	y active solutes in).
Jul	0.0	0.0	0.0	(0.0				
Aug	0.0	0.0	0.0	(0.0				
Sep	0.0	0.0	0.0	().0				

Separate monthly A_{aw}, values for each of the 4 SESOIL layers

Geometric Smooth-Surface Area

$$A_{aw} = (1 - \theta_w) \left(\frac{6(1 - n_t)}{d_{50}} \right)$$

where:

Parameter	Description
A_{aw}	Air-water interfacial areas (cm ² /cm ³)
0	Monthly volumetric soil moisture content of the
Θ_W	SESOIL soil column (cm ³ /cm ³)
n_t	Total soil porosity (cm ³ /cm ³)
d_{50}	Median soil particle diameter (cm)

Separate total porosity and d₅₀ values for each of the 4 SESOIL layers

Brusseau, M.L., 2023, Determining air-water interfacial areas for the retention and transport of PFAS and other interfacially active solutes in unsaturated porous media. Sci Total Environ. 163730.

Aqueous Interfacial Tracer Tests

$$A_{aw} = (1 - \theta_w) * 3.9 * d_{50}^{-1.2}$$

where:

Parameter	Description
A_{aw}	Air-water interfacial areas (cm ² /cm ³)
0	Monthly volumetric soil moisture content of the
O_W	SESOIL soil column (cm ³ /cm ³)
d_{50}	Median soil particle diameter (cm)

Separate d_{50} values for each of the 4 SESOIL layers

Brusseau, M.L., 2023, Determining air-water interfacial areas for the retention and transport of PFAS and other interfacially active solutes in unsaturated porous media. Sci Total Environ. 163730.

Corrected Aqueous Interfacial Tracer Tests

$$A_{aw} = \left[-2.85 * \theta_w + 3.6\right] * \left[(1 - \theta_w) * 3.9 * d_{50}^{-1.2}\right]$$

where:

Parameter	Description
A_{aw}	Air-water interfacial areas (cm ² /cm ³)
0	Monthly volumetric soil moisture content of the
Θ_{W}	SESOIL soil column (cm ³ /cm ³)
d_{50}	Median soil particle diameter (cm)

Separate d₅₀ values for each of the 4 SESOIL layers

Brusseau, M.L., 2023, Determining air-water interfacial areas for the retention and transport of PFAS and other interfacially active solutes in unsaturated porous media. Sci Total Environ. 163730.

Soil Heterogeneity

Testing and Validation

- Very high and very low loads produced a mass balance error
- Expanded SESOIL range
- Likely enough for most cases
- But not all
- Scaling factor slides range up/down

SESOIL Process	Pollutant Mass (ug)	Percent of Total
Volatilized In Soil Air Sur. Runoff In Washload Ads On Soil Hydrol Soil Degrad Soil Pure Phase Complexed Immobile CEC Hydrol CEC In Soil Moi Ads Air-H2O Hydrol Mois Degrad Mois Other Trans	3.376E+04 2.132E+03 0.000E+00 0.000E+00 7.322E+07 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 2.193E+07 4.039E+07 0.000E+00 0.000E+00 0.000E+00	0.02 0.00 0.00 0.00 53.84 0.00 0.00 0.00 0.00 0.00 16.13 29.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Other Sinks Gwr. Runoff	0.000E+00 0.000E+00	0.00 0.00
Total Output Total Input Input - Output	1.355E+08 1.360E+08 4.196E+05	99.69

Testing and Validation

Massachusetts Department of Environmental Protection

Maine Department of Environmental Protection

New Hampshire Department of Environmental Services

Summary

- SESOIL was enhanced to simulate PFAS migration
- Robust and comprehensive PFAS modeling
- Needs further testing and validation

Conflict of Interest

The author has developed the SEVIEW contaminant transport and fate modeling software referred to in this research. The author receives compensation for the sale, support, and training of the software.

