EARTH SCIENCES

Eocene exhumation of the High Andes differentiated by detrital multimethod U-Pb-He thermochronology and thermal history modeling

> **Julie Fosdick** University of Connecticut **Andrea Stevens Goddard** Indiana University **Chelsea Mackaman-Lofland** University of Tennessee, Knoxville **Ana Lossada** University of Buenos Aires CONICET **María Pía Rodriguez Andres** Bello University **Barbara Carrapa** University of Arizona

Acknowledgements

Parque Ciénaga del Río Huaco Universidad Nacional de San Juan Arizona LaserChron Center Arizona Radiogenic Helium Dating Laboratory Colorado TRaIL

Teresa Jordan Mauricio Calderon Megan Mueller Cullen Kortyna Ellen Reat Gustavo Ortiz Patricia Alvarado BAHTL Fosdick Lab Group NSF EAR Awards 1049605 2045695

With special thanks to the NSF Postdoctoral Fellowship and CAREER Programs

The Central Andean Orogenic Belt

Archetype of subduction-related orogenic system

- Linked processes between thrust-belt thickening, surface uplift, basin subsidence, and arc magmatism
	- Orogenic cyclicity *DeCelles et al., 2009; 2015*
	- Evolutionary stages of wedge growth *Giambiagi et al., 2022*

Paleogene orogenic history remains contentious

- Tectonic stasis/quiescence? *Horton and Fuentes, 2016; Horton et al., 2018*
- **EXA Recent recognition of Paleogene retroarc strata** *Fosdick et al., 2017; Suriano et al., 2023; Ronemus et al., 2024*
- \triangleright New structural and thermochronology of hinterland deformation *Lossada et al., 2017; Rodriguez et al., 2018; and Mackaman-Lofland et al., 2024*

We revisit the detrital signature of Paleogene – Neogene strata to test whether there is evidence of hinterland exhumation and source-basin sediment routing

Giambiagi et al. (2022)

Southern Central Andes 30°S Pampean flat-slab segment

- Neogene sedimentary and volcanic rocks Paleogene sedimentary and volcanic rocks Palegene intrusive rocks
- Cretaceous sedimentary and igneous rocks Jurassic sedimentary and igneous rocks

Perm-Triassic Choiyoi Group Devonian-Permian clastics **Upper Paleozoic intrusions**

Silurian-Devonian clastics C-Ordovician carbonates

Fosdick et al. (2024) Geology

Bermejo – Vinchina foreland basin

800

Zircon U-Pb Age (Ma)

1200

1600

 Ω

400

Huaco Composite Section

Bermejo – Vinchina foreland basin

Vallecito Fm. (lower Oligocene to lower Miocene)
 Huaco Composite Section *Eolian and fluvial deposits*

Fosdick et al. (2024)

Paired Detrital U-Pb and (U-Th)/He Thermochronology

LA-ICPMS U-Pb analysis **Radiogenic He degassing and measurement**

Dissolution and parent U-Th chemistry

Bermejo Basin: detrital double-dating thermochronology
 Bermejo Basin: detrital double-dating thermochronology

Fosdick et al. (2024)

Bermejo Basin: detrital double-dating thermochronology

Challenges with interpreting detrital thermochronology data

1) Missing geologic context available for in-situ samples (bedrock/outcrop/core)

2) Potential source areas have insufficient t-T history characterization

 \rightarrow Precludes useful MDS or unmixing models

3) How to assess effects of post-depositional heating and diffusive He loss

Thermal history modeling of detrital U-Pb-DZHe Data

HeFTy software (v 2.0 *Ketcham, 2024*)

- 1. Identify define distinct **U-Pb-DZHe modes**
- 2. Construct inverse model to **test a specific hypothesis** or t-T scenario, constrained by other geologic information, e.g., U-Pb crystallization age, uniformities, burial histories
- 3. Invert (U-Th)/He data to resolve possible t-T histories permitted by data and diffusion kinetics
- 4. Leverage shared basin t-T history and other DZHe modes for whole sample to refine model and evaluate results

Detrital zircon U-Pb-ZHe modes

Fosdick et al. (2024)

Model 1: undefined burial t-T history

Choiyoi II

Data: Choiyoi II ZHe (n=4) Sample AHe data (n=2)

ZDAMM (Guenthner et al., 2015)

Constraints: Box 1: DZ U-Pb age @ 300 °C Box 4: Sample deposition Box 2: Cooling Box 3: Surface or reheating Box 5: Burial reheating (80-200 °C, 34-0 Ma) **Kinetics:** RDAMM (Flowers et al., 2009) Box 3: Surface or reheating Surface conditions 15 ± 5 °C

HeFTy 2.0 (Ketcham 2024)

Model 1: undefined basin t-T history

Model 2: constrained by basin subsidence

Model 2: constrained by basin subsidence record

The most complete geologically constrained model

Model 1: undefined basin t-T history

120

 $140 -$ 160

140 Time (Ma

Model 2: constrained by basin subsidence record

The most complete geologically constrained model

Model 2: constrained by basin subsidence

Model 2: constrained by basin subsidence record

The most complete geologically constrained model

Model 3: constrained by basin subsidence record *and* requires compatible basin t-T history that satisfies all DZHe modes

- 1. Evaluate overlapping basin t-T histories from Model 2
- 2. Refine basin t-T constraints to satisfy all modes
	- \rightarrow most retentive grains?
	- \rightarrow Younger DZHe mode(s)?
	- \rightarrow Depositional age important

Model 3: refined by overlapping DZHe modes

Model 1: undefined basin t-T history
 Model 3: constrained by basin subsidence record *and* requires compatible basin t-T history that satisfies all DZHe modes

- 1. Evaluate overlapping basin t-T histories from Model 2
- 2. Refine basin t-T constraints to satisfy all modes
	- \rightarrow most retentive grains?
	- \rightarrow Younger DZHe mode(s)?
	- \rightarrow Depositional age important

Model comparison and sensitivity evaluation

Models that leverage shared basin t-T history and satisfy all DZHe modes refine estimates in **onset of cooling** and maximum post-depositional **burial heating**

For Choiyoi II DZHe mode, lag time $(tc - td)$ is refined from up to 10 Myr (Model 1) versus 2-5 My (Model 3)

Reheating 100-120°C at 23 Ma (Model 1) versus 90-110°C at 15 Ma (Model 3) prior to cooling and inferred basin inversion

Fosdick et al. 2024

Implications for Eocene hinterland unroofing

Two distinct t-T histories of Choiyoi-derived detritus requires multiple sources:

- *pre-orogenic* signature (Choiyoi I)
- *synorogenic* unroofing signature (Choiyoi II)

Onset of cooling ~38–35 Ma; 2-5 Myr lag time between cooling and deposition

Implications for Eocene hinterland unroofing

Rejuvenated phase of **shortening**, **exhumation**, and **sediment routing** to the distal foreland at 30°S in late Eocene–early Oligocene time

Fosdick et al. 2024

Implications for Eocene hinterland unroofing

Along-strike development of Andean shortening

Two major phases of Cenozoic orogenesis across the Central Andes

Integrated foreland basin system across changes in tectonic subduction mode, basement structures, and climate gradients

Southward decrease in Eocene shortening rate \rightarrow define the southernmost extent of this contractional phase?

Concluding points and take-aways

- Detrital U-Pb-ZHe thermochronology **differentiates ambiguous** hinterland sediment sources with unique t-T histories
- **Modeling approach for discrete detrital U-Pb-ZHe modes** can be powerful tool to resolve source-to-basin t-T histories
	- \rightarrow opportunities for interpreting detrital datasets as double-dating thermochronology capabilities expand (e.g., LADD) \rightarrow test specific hypotheses for a given sediment source \rightarrow refine lag time and peak reheating estimates
- In the southern Central Andes ~30°S, rapid latest Eocene **hinterland cooling** and inferred exhumation
	- \rightarrow Difficult to reconcile with neutral-state stress model for the Paleogene Andes **rejuvenated phase** of shortening, exhumation, and sediment routing to distal foreland

Thank you!!