Mapping 2023 Groundwater Stress Zones in Coastal Lowland Aquifers Using Downscaled GRACE Satellite Data

Md Nasrat Jahan^{1,2}, Lance D Yarbrough^{1,2}, Greg Easson³, Zahra Ghaffari^{1,2}, Hakan Yasarer⁴

¹ Department of Geology & Geological Engineering, University of Mississippi
² Mississippi Mineral Resources Institute, University of Mississippi
³Office of Research and Sponsored Programs, University of Mississippi
⁴Department of Civil Engineering, The University of Mississippi, University

Geology and Geological Engineering

Introduction

- The Coastal Lowlands aquifer system ranks fourth in the nation as a source of groundwater for public supply and fifth as a source of private domestic supply, providing about one billion gallons per day for this use (Barlow and Belitz, 2016).
- According to National Water Census: Regional Groundwater Availability Studies (U.S. Geological Survey, 2022), heavy withdrawals from the aquifer system in some areas have resulted in **saltwater encroachment** and **land subsidence**.
- Land surface subsidence in the Houston-Galveston region, Texas due to the excessive withdrawal of groundwater
- Subsidence and saline water intrusion in Baton Rouge, Louisiana and Mobil, Alabama

Location of the Study Area

The total area of **2,77,534** square kilometers in the **Gulf of Mexico Coastal** Plain includes the coastal area of **Texas**, Louisiana, Mississippi, and part of Alabama, Florida states of the United States of America.

Objectives

- Apply a **Random Forest Model** to downscale the GRACE satellite data into **4 km** spatial resolution
- Identify the **potential groundwater stress zone** using the downscaled GRACE Mascon data of 2023
- Validate the potential groundwater stress zone using the available groundwater level data of the study area

What is GRACE/GRACE-FO

- GRACE mission by NASA and the German Aerospace Center, which launched on March 17, 2002, and ended in October 2017. GRACE-FO launched on May 21, 2018
- Its primary mission goal is to continue the tracking of Earth's mass movements and changes, in particular those related to water
- It can detect gravitational differences on the planet's surface equivalent to that of a 300-km disk of water only one centimeter thick.
- Each monthly GRACE-FO Tellus grid represents the surface mass deviation for that month relative to a baseline temporal average (2005-2010).
- The units of the data are Liquid Water Equivalent Thickness in meter or centimeter

Illustration of the GRACE twin satellites in orbit (NASA image credit).

What is Random Forest Model (RFM)

The **Random Forest** model is an ensemble machine learning algorithm that combines multiple decision trees to improve accuracy and reduce overfitting. It works by:

Step 1: Select **random samples** from a given data or training set.

Step 2: This algorithm will construct an **individual decision tree** for each set of training data.

Step 3: Aggregate the decisions of the individual trees through averaging.

Step 4: Finally, designate the prediction result with **the highest vote** as the conclusive prediction result

Data

Variables	Source	Spatial Resolution
GRACE/GRACE-FO	JPL	~ 111 km (Represent the 333 km)
Root zone soil moisture (RZSM)	GLDAS	~ 28 km
Plant canopy surface water (CNWAT)	GLDAS	~ 28 km
Snow depth water equivalent (SWE)	GLDAS	~ 28 km
Mean Temperature	PRISM	4 km
Total Precipitation	PRISM	4 km
NDVI	MODIS	1 km
Evapotranspiration (ET)	MODIS	500 m
DEM	SRTM	30 m
Slope (Generated from DEM)	SRTM	30 m
Soil Type	FAO/UNESCO	Vector data
Lithology	Esri	250 m
Ground-based measurement	USGS/TWDB/GSAL	Groundwater Table point data

Data Preprocessing

- 1. **Download** all the data
- 2. Reproject all the data into UTM Zone 16N NAD 1983 projection (EPSG:26916)
- 3. Clip all the data
- 4. Prepare the **Monthly Anomaly** of Mean Temperature, Total Precipitation, NDVI, ET, RZSM, CNWAT & SWE
- 5. Resample all the data into 4 km spatial resolution
- 6. Prepare the Monthly Anomaly of Groundwater Storage Anomaly (GWSA) [GWSA = TWSA – (RZSM + CNWAT + SWE)]
- 7. Create Fishnet layers (4km x 4 km) and integrate Data values into the Fishnets
- 8. Mask the Fishnet layer with the surface waterbody layer of the study area

Methods Flowchart

Important Variables

Variables	Rank of Importance
Predicted TWSA / Soil Type	1
Mean Temperature / Total Precipitation	2
DEM	3
Evapotranspiration	4
NDVI	5
Slope	6
Lithology	7

Statistical Matrix of RF Model

Downscaled GWSA	Training Data			Validation Data		
	R-Squared	p value	RMS Error	R-Squared	p value	RMS Error
January	0.971	0.000	0.003	0.842	0.000	0.007
February	0.979	0.000	0.004	0.889	0.000	0.009
March	0.980	0.000	0.004	0.896	0.000	0.008
April	0.987	0.000	0.003	0.934	0.000	0.007
Мау	0.993	0.000	0.004	0.966	0.000	0.008
June	0.996	0.000	0.002	0.981	0.000	0.005
July	0.996	0.000	0.002	0.981	0.000	0.005
August	0.995	0.000	0.003	0.980	0.000	0.006
September	0.996	0.000	0.003	0.980	0.000	0.007
October	0.996	0.000	0.003	0.980	0.000	0.007
November	0.987	0.000	0.003	0.946	0.000	0.006
December	0.991	0.000	0.002	0.957	0.000	0.005

Downscaled Monthly GRACE-FO 2023

Downscaled GRACE-FO 2023

Location of Groundwater Level (GWL) Monitoring Well

Conclusions

- The validating data R² for each model of the downscaled monthly GWS anomaly map of 2023 ranges from **0.84 to 0.98**.
- The validating data RMS error for each model of the downscaled monthly GWS anomaly map of 2023 ranges from **0.005 to 0.009**.
- The downscaled GWSA from GRACE-FO 2023, produced using the Random Forest Model, shows an approximately similar declining trend in groundwater levels (GWL) compared to the GWLA surface derived from GWL data.

Future Work

- In the future, Random Forest, Artificial Neural Network (ANN), and Deep Learning models will be applied to the time series datasets (2003-2023) of GRACE/GRACE-FO to generate downscaled GWSA maps (2003-2023).
- An attempt will be made to assess the characteristics of downscaled GWSA data (2003-2023) from GRACE/GRACE-FO to identify zones of saline water intrusion.

Acknowledgement

Thank You

