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Agenda

1. Introduction – Why Arbuckle?

2. Workflow-Why do it this way?
Industry standard methodology – Time – Data - Resolution 

3. Results / What have learned?

4. Looking into the future..

Geology/Stratigraphy

Petrophysics

Geophysics/Geomechanics

Stratigraphic 
Forward Modeling

Dynamic model 
Initialization

Subsurface Data

Successful Subsurface
CCS Screening

Regional/Basin Scale Subsurface CCS Screening Workflow



US DOE investigating 5 types of subsurface 
formations for geologic carbon storage

• Saline formation
• O&G reservoirs
• Unmineable coal seams
• Organic rich shales
• Basalt formations

Why Arbuckle?

Arbuckle:
• Producing oil and gas for ~100 

years

• A saline formation with huge 
waste-water injection history

• At the right depth for CO2 
storage!!

Annual Production from Kansas Arbuckle reservoirs. (Franseen et. al., 2004)
Arbuckle reservoir production data in million barrels, compared to total Kansas oil 

production. (Franseen et. al., 2004)

Locations of 49 Class I wells (red) and 2,381 Class II wells (blue) that dispose wastewater into 
the Arbuckle Group in Kansas. (Ansari et. al., 2019)

Yearly wastewater injection volumes from Class I 
(red) and Class II (blue) wells. (Ansari et. al., 2019)



Distribution of Lower Ordovician lithofacies of western US (Arbuckle Fm in Kansas) (Fritz et. al., 
2012)

Arbuckle: Regional Geology

MGPI Processing #1, Atchison, KS

Strat section, KGS Bulletin, 189 Plate 1

Arbuckle

MGPI Processing #1, Atchison, KS

Chattanooga
Shale

Maquoketa
ShaleA
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Overburden

Precambrian Basement

East-West Vertical cross-section (V.E. 25) 
through the Subsurface of Kansas. KGS

Arbuckle

B
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A,B- Core photographs of Microbial carbonates with 
vuggy porosity. MGPI Processing #1, Atchison, KS

Precambrian 
Basement

B B’

Arbuckle Isochore. KGS

A A’

Diagrammatic cross-section of Arbuckle Group across Kansas. (Franseen et. al., 2004)

• Arbuckle Group – Cambro-Ordovician carbonate rocks 
(Reservoir, mostly dolomitized) resulting from Paleozoic 
transgressions as part of the Sauk Sequence

• Overlain regionally and locally by Maquoketa, 
Chattanooga and Heebner Shale (Seal: Ordovician, L. Miss-
Dev, Pennsylvanian)

• Present in most of Kansas, except NW and NE Kansas due 
to post depositional uplift and erosion.

A A’



Workflow

Products from ~6 months of work
• Faulted framework model
• 2000*2000 ft cell size, 149 layers in Arbuckle with ~176 million cells
• Regional CCS potential map and considerations

Data used
• Well tops: ~6000 Precambrian Basement & ~70,000 Arbuckle
• Well logs: ~220 wells (~3-4 per county)
• DST data ~ 100 wells

Other data available
2D/3D seismic, Earthquake, Gravity, cores/cuttings, DST & production 
data

Geology/Stratigraphy

Petrophysics

Geophysics/Geomechanics

Stratigraphic 
Forward Modeling

Dynamic model 
Initialization

Successful Subsurface
CCS Screening

3D faulted framework model 
building

Basin scale Petrophysical  
calibration/evaluation

Mechanical Earth 
Model/Seismic inversion/QI

Predicting reservoir/non-
reservoir facies distribution 

Initialize formation pressure, 
Production/Injection data

Compare regional scale 
model with local models

Well Tops, 
Well Logs

DST

seismic data, 
earthquake data, 

core/plugs, 
production data, 

pressure data 

Regional/Basin Scale Subsurface CCS Screening Workflow

Completed

Future

In-progress

Undifferentiated Phanerozoic

Arbuckle Group

Undifferentiated Basement



Faulted Framework modeling

QC (depth) and update 
PC_Basement/Arbuckle well top data

Use well top data as control points 
for PC_Basement/Arbuckle

Use well tops in 3D to justify 
presence/absence of faults by 
comparing vertical separation  

(~>200 ft) across probable faults

Isochores from wells with both 
Arbuckle and PC_Basement tops 
added to Arbuckle horizon and 

flexed back to remaining basement 
tops to build PC_Basement  

Modify fault-horizon intersections 
(3D) based on updated well-top 

data and faults

Build & Update 
PC_Basement/Arbuckle 

surface

NOTE: Model Horizon outputs are used as 
USGS STATEMAP subsurface maps

(See Kolbe’s poster on 
Precambrian Basement of Kansas)
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Faulted Framework modeling

QC (depth) and update 
PC_Basement/Arbuckle well top data

Use well top data as control points 
for PC_Basement/Arbuckle

Use well tops in 3D to justify 
presence/absence of faults by 
comparing vertical separation  

(~>200 ft) across probable faults

Isochores from wells with both 
Arbuckle and PC_Basement tops 
added to Arbuckle horizon and 

flexed back to remaining basement 
tops to build PC_Basement  

Modify fault-horizon intersections 
(3D) based on updated well-top 

data and faults

Build & Update 
PC_Basement/Arbuckle 

surface

Before

After

NOTE: Model Horizon outputs are used as 
USGS STATEMAP subsurface maps

(See Kolbe’s poster on 
Precambrian Basement of Kansas)
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1. Reservoir Presence

Arbuckle zone model

Arbuckle isochore/thickness

thicker

X

=

*COA – Chance of Adequacy



2. Reservoir Quality- Porosity

~300 wells

Well log vs Upscaled Porosity

Well log vs Upscaled vs 3D grid Por
Average Porosity map X-section view of NPhi 3D grid

NPhi 3D grid using SGS Petrophysical modeling



2. Reservoir Quality- Porosity

~300 wells

Well log vs Upscaled Porosity

Well log vs Upscaled vs 3D grid Por
Average Porosity map

Average Net Porosity map

X-section view of NPhi 3D grid

NPhi 3D grid using SGS Petrophysical modeling

X-section view of Net NPhi 3D grid

Net NPhi 3D grid using SGS Petrophysical modeling

0.11

0.14

(~47% reduction in volume)



3. Seal (leakage)

thicker

Fault Proximity

Well Distance

=

Seal thickness (composite)

farther

farther

X

X

*combination of 
Chattanooga, 
Maquoketa & Heebner 
shales (regional 
distribution) 

*Pseudo Faults at the 
boundary/edge of the 
model not considered for 
the COA map



4. CO2 phase state (supercritical vs subcritical)

X

=

Arbuckle depth below surface

Special thanks to Mark White for DST interpretation using STOMP 
(n=~100 wells)

CO2 Supercritical Surface



Regional COA

X

X

X

=

Reservoir Quality

Reservoir Presence

Seal/Leakage

CO2 phase state

Increasing 
chance of 
success

Geology/Stratigraphy

Petrophysics

Geophysics/Geomechanics

Stratigraphic 
Forward Modeling

Dynamic model 
Initialization

Regional/Basin Scale Subsurface 
CCS Screening Workflow

Subsurface Data

Successful Subsurface
CCS Screening

NOTE:  Challenged play elements don’t 
preclude a successful CCS project/prospect

Aggregate CCS COA Map

DOE Funded CCS evaluations

Class VI Applications
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NPhi vs Net NPhi

NPHI Net Nphi

Preliminary County Properties
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Comparing play elements of counties with the highest and lowest (Pore Volume) storage capacities  



Preliminary CO2 storage estimates (max)
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Depth below Surface

Depth below surface vs CO2 storage capacity (Gt) per county

Supercritical CO2 density
>~600 kg/m38

0
0

m

Variation of CO2 density with depth. CO2 density increases rapidly at 
approximately 800 m depth, when the CO2 reaches a supercritical state. 
Cubes represent the relative volume occupied by the CO2 and down to 
800 m, this volume can be seen to dramatically decrease with depth 
(IPCC Special Report on Carbon Dioxide Capture and Storage, 2005)

Uncertainties:
• Gas relative permeability
• Gas buoyancy
• Reservoir permeability heterogeneity
• Impact on geochemistry of reactive 

carbonate reservoirs
• Irreducible water saturation
• Geologic uncertainties
• Decades of hydrocarbon production

800m

Counties



Geology/Stratigraphy

Petrophysics

Geophysics/Geomechanics

Stratigraphic 
Forward Modeling

Dynamic model 
Initialization

Successful Subsurface
CCS Screening

3D faulted framework model 
building

Basin scale Petrophysical  
calibration/evaluation

Mechanical Earth 
Model/Seismic inversion/QI

Predicting reservoir/non-
reservoir facies distribution 

Initialize formation pressure, 
Production/Injection data

Compare regional scale 
model with local models

Well tops, 
Well logs,

DST

seismic data, 
earthquake data, 

core/plugs, 
production data

Regional/Basin Scale Subsurface CCS Screening Workflow

Completed

Future

In-progress

Big Picture:

A basis for basin-scale modeling of 
Carbon Sequestration study in Kansas

Takeaways:
• Valuable regional screening effort, utilizing the 

Arbuckle-Basement faulted framework model
• Identify “favorable” vs potentially “challenged” areas

Scope for future work (near term):
1. Normalize all petrophysical data and build robust 

property models
2. Revise CO2 phase study with additional DST data
3. Compare regional study with focus studies

Conclusions

1

2

3



THANK YOU
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